Another Example -#x(Ax&Bx) 1) -#x(Ax&Bx) A $x(Ax>-Bx) The 2 ways to

Slides:



Advertisements
Similar presentations
(a + b) 2 = a 2 + 2ab + b 2 a a a2a2 b ab b2b2 b b b a a a + b (a + b ) 2 = a2a2 +ab +b 2 = a 2 + 2ab + b 2.
Advertisements

The Square of Opposition. AFFIRMATIVENEGATIVE UNIVERSALUNIVERSAL PARTICUILARPARTICUILAR.
8.3 – Factoring Trinomials: x 2 + bx + c. Recall: Simplify (x + 2)(x + 3).
1 Press Ctrl-A ©G Dear 2008 – Not to be sold/Free to use Binomial Products Stage 6 - Year 11 Mathematic (Preliminary)
Perfect Square Trinomials. Form for Perfect Square Trinomials: a 2 + 2ab + b 2 OR a 2 – 2ab + b 2.
Example 1 Solve ax b c for x. Then use the solution to solve Solve a literal equation + = += 2x SOLUTION STEP 1 Solve ax b c for x. += ax b c Write.
Quadratic Functions Review / Warm up. f(x) = ax^2 + bx + c. In this form when: a>0 graph opens up a 0 Graph has 2 x-intercepts.
Happy Birthday, Darwin!. Show that {(A v ~C)  ~B, [~B  (Q &~Q)], ~C & A} ⊦ is inconsistent in SD 1 (A v ~C)  ~BA 2 ~B  (Q & ~Q)A 3 ~C & AA.
Objective: To explore the relationship between the graphs of y = f(x) and y = f(x + k), where f(x) is in the form of ax 2 + bx + c. Prepared by Jaco Cheung.
FACTORING ALGEBRAIC EXPRESSIONS
Equivalent Fractions Equivalent Fractions Using Cross-Multiplication.
EXAMPLE 1 Find the axis of symmetry and the vertex Consider the function y = – 2x x – 7. a. Find the axis of symmetry of the graph of the function.
6.5 – Solving Equations with Quadratic Techniques.
8.5 – Factoring Differences of Squares. Recall: Recall: Product of a Sum & a Difference.
Algebra 10.8 Factoring Completely.
Difference of Squares Chapter 8.8. Difference of Squares (Definition)
Warm-up over Lesson 5-1.
Quadratics Solving equations Using “Completing the Square”
Factoring Checklist Works every time!. 1. Check to see if there is a GCF. If so, factor it out. 3xy² + 12xy.
4.1 Graph Quadratic Functions in Standard Form
5.3 – Solving Quadratic Equations by Factoring. Ex. 1 Solve y = x 2 + 5x + 6 by factoring.
Lecture 8 Predicate Logic TF4233 Mathematical Logic Semester 2, 2006/2007 Dr. Rolly Intan & Cherry Ballangan, MAIT Informatics Department, Petra Christian.
EXAMPLE 3 Graph a function of the form y = ax 2 + bx + c Graph y = 2x 2 – 8x + 6. SOLUTION Identify the coefficients of the function. The coefficients.
QUADRATIC FUNCTIONS IN STANDARD FORM 4.1B. Review  A quadratic function can be written in the form y = ax 2 + bx + c.  The graph is a smooth curve called.
Quadratic Function A function that can be written in standard form; f(x) = ax 2 + bx + c where a ≠ 0.
Bellwork: Factor Each. 5x2 + 22x + 8 4x2 – 25 81x2 – 36 20x2 – 7x – 6
Brian K. Strickland a ba Λ a aa b Λ -NFA for Regular Expression (aab)*(a + aba)*
Multiplying Powers Dividing Powers Zero ExponentsNegative.
Study Questions for Quiz 7 The exam has three parts: 1. (45 pts) Argument Translation in Predicate Logic 2. (65 pts) Proofs and Trees in Predicate Logic.
Any General All A BNo A BSome A B Any A B #x(Ax&Bx) $x(Ax>Bx) -#x(Ax&Bx) $x(Ax>-Bx)
Unit 7 Day 5. After today we will be able to: Describe the translations of a parabola. Write the equation of a quadratic given the vertex and a point.
Visualizing Vector fields
Warm up Factor the expression.
The Quadratic Formula..
Warm up.
Quadratic Inequalities
Algebra I Section 9.3 Graph Quadratic Functions
Jeopardy Perfect Cubes Factor then Solve Trinomials Binomials Misc.
6.5. A Summation Method Asume that:
Factoring Trinomials of the form
מיחזור במערכת החינוך.
A road map for predicate logic translation.
The Quadratic Formula.
Section 11.1 Quadratic Equations.
Xuan Guo Lab 5 Xuan Guo.
Natural deduction Gerhard Gentzen.
2 Identities and Factorization
Warm-Up #22 (3m + 4)(-m + 2) Factor out ( 96
Answers to Unit 1, Lesson 1 Exercises
Objective Solve quadratic equations by graphing.
Review: Simplify.
Algebra Jeopardy!.
COMPOSING QUADRATIC FUNCTION
More about Graphing Quadratic Functions
University of Gujrat Department of Computer Science
5.5 – Completing the Square
Homework Check.
X-box Factoring.
A road map for predicate logic translation.
5.4 Completing the Square.
Algebraic Identities.
Practice Problems ax2 + bx + c
Copyright © 2012 Pearson Education, Inc. Publishing as Addison Wesley
The Quadratic Formula..
Graphing Quadratic Functions
BETONLINEBETONLINE A·+A·+
The Quadratic Formula..
Warm Up Find each product. 1. (x – 2)(2x + 7) 2. (3y + 4)(2y + 9)
quadratic formula. If ax2 + bx + c = 0 then
Ch 10: Polynomials G) Completing the Square
Presentation transcript:

Another Example -#x(Ax&Bx) 1) -#x(Ax&Bx) A $x(Ax>-Bx) The 2 ways to translate ‘No’ 1) -#x(Ax&Bx) A $x(Ax>-Bx) GOAL Quantifier Exchange: -$x = #x- -#x = $x-

Another Example -#x(Ax&Bx) 1) -#x(Ax&Bx) A $x(Ax>-Bx) The 2 ways to translate ‘No’ 1) -#x(Ax&Bx) A 2) -$x(Ax>-Bx) PA ?&-? ?,? &I $x(Ax>-Bx) 2-? -O Quantifier Exchange: -$x = #x- -#x = $x-

Another Example -#x(Ax&Bx) 1) -#x(Ax&Bx) A $x(Ax>-Bx) The 2 ways to translate ‘No’ 1) -#x(Ax&Bx) A 2) -$x(Ax>-Bx) PA ?&-? ?,? &I $x(Ax>-Bx) 2-? -O Quantifier Exchange: -$x = #x- -#x = $x-

Another Example -#x(Ax&Bx) 1) -#x(Ax&Bx) A $x(Ax>-Bx) The 2 ways to translate ‘No’ 1) -#x(Ax&Bx) A 2) -$x(Ax>-Bx) PA 3) $x-(Ax&Bx) 1 QE ?&-? ?,? &I $x(Ax>-Bx) 2-? -O Quantifier Exchange: -$x = #x- -#x = $x-

Another Example -#x(Ax&Bx) 1) -#x(Ax&Bx) A $x(Ax>-Bx) The 2 ways to translate ‘No’ 1) -#x(Ax&Bx) A 2) -$x(Ax>-Bx) PA 3) $x-(Ax&Bx) 1 QE ?&-? ?,? &I $x(Ax>-Bx) 2-? -O Quantifier Exchange: -$x = #x- -#x = $x-

Another Example -#x(Ax&Bx) 1) -#x(Ax&Bx) A $x(Ax>-Bx) The 2 ways to translate ‘No’ 1) -#x(Ax&Bx) A 2) -$x(Ax>-Bx) PA 3) $x-(Ax&Bx) 1 QE 4) #x-(Ax>-Bx) 2 QE ?&-? ?,? &I $x(Ax>-Bx) 2-? -O Quantifier Exchange: -$x = #x- -#x = $x-

Another Example -#x(Ax&Bx) 1) -#x(Ax&Bx) A $x(Ax>-Bx) The 2 ways to translate ‘No’ 1) -#x(Ax&Bx) A 2) -$x(Ax>-Bx) PA 3) $x-(Ax&Bx) 1 QE 4) #x-(Ax>-Bx) 2 QE ?&-? ?,? &I $x(Ax>-Bx) 2-? -O Quantifier Exchange: -$x = #x- -#x = $x-

Another Example -#x(Ax&Bx) 1) -#x(Ax&Bx) A $x(Ax>-Bx) The 2 ways to translate ‘No’ 1) -#x(Ax&Bx) A 2) -$x(Ax>-Bx) PA 3) $x-(Ax&Bx) 1 QE 4) #x-(Ax>-Bx) 2 QE 5) -(Aa>-Ba) 4 #O ?&-? ?,? &I $x(Ax>-Bx) 2-? -O Quantifier Exchange: -$x = #x- -#x = $x-

Another Example -#x(Ax&Bx) 1) -#x(Ax&Bx) A $x(Ax>-Bx) The 2 ways to translate ‘No’ 1) -#x(Ax&Bx) A 2) -$x(Ax>-Bx) PA 3) $x-(Ax&Bx) 1 QE 4) #x-(Ax>-Bx) 2 QE 5) -(Aa>-Ba) 4 #O 6) -(Aa&Ba) 3 $O ?&-? ?,? &I $x(Ax>-Bx) 2-? -O Quantifier Exchange: -$x = #x- -#x = $x-

Another Example -#x(Ax&Bx) 1) -#x(Ax&Bx) A $x(Ax>-Bx) The 2 ways to translate ‘No’ 1) -#x(Ax&Bx) A 2) -$x(Ax>-Bx) PA 3) $x-(Ax&Bx) 1 QE 4) #x-(Ax>-Bx) 2 QE 5) -(Aa>-Ba) 4 #O 6) -(Aa&Ba) 3 $O 7) Aa&Ba 5 AR ?&-? ?,? &I $x(Ax>-Bx) 2-? -O Quantifier Exchange: -$x = #x- -#x = $x-

Another Example -#x(Ax&Bx) 1) -#x(Ax&Bx) A $x(Ax>-Bx) The 2 ways to translate ‘No’ 1) -#x(Ax&Bx) A 2) -$x(Ax>-Bx) PA 3) $x-(Ax&Bx) 1 QE 4) #x-(Ax>-Bx) 2 QE 5) -(Aa>-Ba) 4 #O 6) -(Aa&Ba) 3 $O 7) Aa&Ba 5 AR 8) (Aa&Ba)&-(Aa&Ba) 7,6 &I 9) $x(Ax>-Bx) 2-8 -O Quantifier Exchange: -$x = #x- -#x = $x-