IMPACT FT-MW Spectroscopy of Organic Rings: Investigation of the

Slides:



Advertisements
Similar presentations
Microsolvation of  -propiolactone as revealed by Chirped-Pulse Fourier Transform Microwave Spectroscopy Justin L. Neill, Matt T. Muckle, Daniel P. Zaleski,
Advertisements

Fourier transform microwave spectrum of isobutyl mercaptan Kanagawa Institute of Technology 1 and The Graduate University for Advanced Studies 2 Yugo Tanaka,
SEMIEXPERIMENTAL EQUILIBRIUM STRUCTURES FOR THE EQUATORIAL CONFORMERS OF N- METHYLPIPERIDONE AND TROPINONE BY THE MIXED ESTIMATION METHOD JEAN DEMAISON,
The Search is Over: Design and Applications of a Chirped Pulse Fourier Transform Microwave (CP- FTMW) Spectrometer for Ground State Rotational Spectroscopy.
HIGH RESOLUTION INFRARED SPECTROSCOPY OF N 2 O-C 4 H 2 AND CS 2 −C 2 D 2 DIMERS MAHDI YOUSEFI S. SHEYBANI-DELOUI JALAL NOROOZ OLIAEE BOB MCKELLAR NASSER.
Room-Temperature Chirped-Pulse Microwave Spectrum of 2-Methylfuran
Anh T. Le and Timothy C. Steimle* The molecular frame electric dipole moment and hyperfine interaction in hafnium fluoride, HfF. Department of Chemistry.
Determination of succinic acid structure in the gas phase by cm/mm spectroscopy Estíbaliz Méndez Alija University of The Basque Country, UPV/EHU, Spain.
An Acoustic Demonstration Model for CW and Pulsed Spectroscopy Experiments Torben Starck, Heinrich Mäder Institut für Physikalische Chemie Christian-Albrechts-Universität.
Chirped Pulse Fourier Transform Microwave Spectroscopy of SnCl Garry S. Grubbs II and Stephen A. Cooke Department of Chemistry, University of North Texas,
Microwave Spectroscopy of Seven Conformers of 1,2-Propanediol Justin L. Neill, Matt T. Muckle, and Brooks H. Pate, Department of Chemistry, University.
OSU 06/19/08 Ultrabroadband Rotational Spectroscopy: Novel Applications of a Shape Sensitive Detector BRIAN C. DIAN Purdue University Department of Chemistry.
Two-Dimensional Chirped-Pulse Fourier Transform Microwave Spectroscopy Amanda Shirar June 22, th OSU International Symposium on Molecular Spectroscopy.
Kelly Hotopp June 22, 2010 Purdue University.  Demonstration of 2D CP-FTMW spectroscopy ◦ Non-Selective Excitation ◦ Selective Excitation  2D CP-FTMW.
ULTRAVIOLET - CHIRPED PULSE FOURIER TRANSFORM MICROWAVE (UV-CPFTMW) DOUBLE-RESONANCE SPECTROSCOPY Brian C. Dian, Kevin O. Douglass, Gordon G. Brown, Jason.
Maria Eugenia Sanz, Carlos Cabezas, Santiago Mata, José L. Alonso The Rotational Spectrum of Tryptophan.
Zeinab. T. Dehghani, A. Mizoguchi, H. Kanamori Department of Physics, Tokyo Institute of Technology Millimeter-Wave Spectroscopy of S 2 Cl 2 : A Candidate.
High-resolution threshold photoionization and photoelectron spectroscopy of propene and 2-butyne Julie M. Michaud, Konstantina Vasilatou and Frédéric Merkt.
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL HYDROSULFIDES: DETECTION OF KSH P. M. SHERIDAN, M. K. L. BINNS, J. P. YOUNG Department of Chemistry.
The Low Frequency Broadband Fourier Transform Microwave Spectroscopy of Hexafluoropropylene Oxide, CF 3 CFOCF 2 Lu Kang 1, Steven T. Shipman 2, Justin.
OSU 06/18/08 Ultrabroadband Rotational Spectroscopy: Novel Applications of a Shape Sensitive Detector BRIAN C. DIAN Purdue University Department of Chemistry.
Novel Applications of a Shape Sensitive Detector 2: Double Resonance Amanda Shirar Purdue University Molecular Spectroscopy Symposium June 19, 2008.
Physique des Lasers, Atomes et Molécules
1 Ab initio and Infrared Studies of Carbon Dioxide Containing Complex Zheng Su and Yunjie Xu Department of Chemistry, University of Alberta, Edmonton,
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
Rotational spectroscopy of two telluric compounds : vinyl- and ethyl-tellurols R.A. MOTIYENKO, L. MARGULES, M. GOUBET Laboratoire PhLAM, CNRS UMR 8523,
Grupo de Espectroscopia Molecular, Unidad Asociada CSIC Laboratorios de Espectroscopia y Bioespectroscopia Edificio Quifima. Parque Científico Universidad.
High-Resolution Visible Spectroscopy of H 3 + Christopher P. Morong, Christopher F. Neese and Takeshi Oka Department of Chemistry, Department of Astronomy.
Molecular Stark Effect Measurements in Broadband Chirped-Pulse Fourier Transform Microwave (CP-FTMW) Spectrometers Leonardo Alvarez-Valtierra, 1 Steven.
0 ipc kiel The rotational spectrum of the pyrrole-ammonia complex Heinrich Mäder, Christian Rensing and Friedrich Temps Institut für Physikalische Chemie.
Infrared--Microwave Double Resonance Spectroscopy of Ar-DF (v = 0,1,2) Justin L. Neill, Gordon G. Brown, and Brooks H. Pate University of Virginia Department.
Broadband Microwave Spectroscopy to Study the Structure of Odorant Molecules and of Complexes in the Gas Phase Sabrina Zinn, Chris Medcraft, Thomas Betz,
FAST SCAN SUBMILLIMETER SPECTROSCOPIC TECHNIQUE (FASSST). IVAN R. MEDVEDEV, BRENDA P. WINNEWISSER, MANFRED WINNEWISSER, FRANK C. DE LUCIA, DOUGLAS T. PETKIE,
An Experimental Approach to the Prediction of Complete Millimeter and Submillimeter Spectra at Astrophysical Temperatures Ivan Medvedev and Frank C. De.
Chirped-Pulse Microwave Spectroscopy in the Undergraduate Chemistry Curriculum Sydney Gaster, Taylor Hall, Sean Arnold, Deondre Parks, Gordon Brown Department.
Initial Development of High Precision, High Resolution Ion Beam Spectrometer in the Near- Infrared Michael Porambo, Brian Siller, Andrew Mills, Manori.
SEEING IS BELIEVING: An 11 GHz molecular beam rotational spectrum (7.5 – 18.5 GHz) with 100 kHz resolution in 15  s measurement time Brian C. Dian, Kevin.
The 61 th International Symposium on Molecular Spectroscopy. ‘06 Funded by: NSF- Exp. Phys. Chem Mag. Hyperfine Interaction in 171 YbF and 173 YbF Timothy.
Structure of the SEVOFLURANE-BENZENE complex as determined by CP-FTMW spectroscopy Nathan A. Seifert, Daniel P. Zaleski, Justin L. Neill, Brooks H. Pate.
A NUCLEOSIDE UNDER OBSERVATION IN THE GAS PHASE: A ROTATIONAL STUDY OF URIDINE I. PEÑA, J.L. ALONSO Grupo de Espectroscopia Molecular. Unidad asociada.
Steven T. Shipman, 1 Leonardo Alvarez-Valtierra, 1 Justin L. Neill, 1 Brooks H. Pate, 1 Alberto Lesarri, 2 and Zbigniew Kisiel 3 Design and performance.
Nathan Seifert, Wolfgang Jäger University of Alberta
CRISTOBAL PEREZ, MARINA SEKUTOR, ANDREY A
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
The microwave spectroscopy study of 1,2-dimethoxyethane
IN THE GAS PHASE AND IN SOLUTION
ROTATIONAL SPECTROSCOPY OF THE METHYL GLYCIDATE-WATER COMPLEX
Daniel A. Obenchain, Jens-Uwe Grabow
Mark D. Marshall, Helen O. Leung, Craig J. Nelson & Leonard H. Yoon
Characterisation and Control of Cold Chiral Compounds
Carlos Cabezas and Yasuki Endo
V. Ilyushin1, I. Armieieva1, O. Zakharenko2, H. S. P. Müller2, F
Aimee Bell, Omar Mahassneh, James Singer,
CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF
How methyl tops talk with each other
THE MILLIMETER-WAVE SPECTRUM OF METHACROLEIN
A STUDY OF THE FORMAMIDE-(H2O)3 COMPLEX BY MICROWAVE SPECTROSCOPY
The Rotational Spectrum of cis- and trans-HSSOH
CHIRALITY DETERMINATION FROM PULSED-JET FOURIER TRANSFORM
THE STRUCTURE OF PHENYLGLYCINOL
LABORATORY AND ASTRONOMICAL DISCOVERY OF HYDROMAGNESIUM ISOCYANIDE
Fourier transform microwave spectra of n-butanol and isobutanol
High-resolution Laser Spectroscopy
The rotational spectrum of the urea isocyanic acid complex
Methylindoles – Microwave Spectroscopy
BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,
10.6 Fourier Transform Mass Spectrometry
The Rotational Spectrum and Conformational Structures of Methyl Valerate LAM NGUYEN Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA)
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
COMPREHENSIVE ANALYSIS OF INTERSTELLAR
Presentation transcript:

IMPACT FT-MW Spectroscopy of Organic Rings: Investigation of the Conformational Landscape Dennis Wachsmuth, Jens-Uwe Grabow Institut für Physikalische Chemie und Elektrochemie Gottfried Wilhelm Leibniz Universität Hannover, Germany Alberto Lesarri Departamento de Química Física y Química Inorgánica Universidad de Valladolid, Spain

Challenges for MW-spectroscopy Large amplitude motions might cause unpredictable wide splittings Examination of (hyper-)fine structure requires very high resolution (e.g. quadrupole coupling) Acquisiton of wide spectral ranges can be tedious Unstable molecular beam sources do not allow for long measurements (laser ablation, discharge, etc.)  Broadband FT-MW spectroscopy D. Banser et al., Angew. Chem. Int. Ed. 44 (2005), 6311–6315.

FT-MW spectroscopy - techniques Balle-Flygare FT-MW spectrometers (Fabry-Pérot resonators) Fixed frequency pulses Advantages Highest spectral resolution (<3 kHz) Extremely sensitive Disadvantages Narrow frequency range ( 1MHz) Laborious acquisition of wide spectral ranges Requires good theoretical predictions „chirp“ broadband FT-MW spectrometers Frequency ramp pulses Advantages Rapid acquisition of wide spectral ranges High resolution Rough precalculations sufficient Disadvantages Less sensitive Requires higher excitation power COBRA IMPACT T. J. Balle et al., J. Chem. Phys. 72 (1980), 922. J.‐U. Grabow et al., Rev. Sci. Instrum. 67 (1996), 4072. G. G. Brown et al., J. Mol. Spec. 238 (2006), 200. M. K. Jahn et al., J. Mol. Spec. 280 (2012), 54.

IMPACT FT-MW spectroscopy In-phase/quadrature phase modulation passage-acquired coherence technique (IMPACT) – FT-MW spectrometer Operational range: 2-26.5 GHz 1 GHz broadband FT-MW spectrometer Up to 20 single measurements per second Sub-Doppler linewidth, FWHM < 15 kHz (0.0000005 cm-1) Signal frequency determination accuracy < 1 kHz (0.00000003 cm-1) 1,0 m M. K. Jahn, D. Dewald, D. Wachsmuth, J.-U. Grabow, S. C. Mehrotra, J. Mol. Spec. 280 (2012), 54-60. J.-U. Grabow in „Handbook of High Resolution Spectroscopy“, Ed. M. Quack, F. Merkt, Wiley 2011, 723-800.

IMPACT - signal generation and acquisition -500…500 MHz sweep Δ from AWG Carrier frequency (2 to 26.5 GHz) from microwave generator ν One-step modulation with I/Q-modulator Molecular signal detection One-step demodulation to DC (phase stable) Phase invariant repetition of experiment allows for averaging in the time domain FFT of time domain molecular signal

IMPACT FT-MW spectroscopy Horn antenna Off-axis parabolic mirrors Highest molecular density and strongest MW field strength overlap Solenoid pulse valve Planar mirror with nozzle

2-Decalone Commercial sample is a mixture of trans- and cis-isomers Several conformations with similar energies Lowest conformers predicted by coarse ab-initio calculations (MP2/6-311G(d,p) ) Conformer   predicted exp. trans A / MHz 2219.00 2229.28279 (57) DE=0 B / MHz 763.90 757.765693 (38) C / MHz 610.99 604.276312 (26) cis 2 1975.61 1992.82809 (35) DE=561.2 cm-1 867.57 853.595668 (48) 738.74 726.007789 (40) cis 1 2004.69 1990.2279 (11) DE=667.1 cm-1 852.51 847.213462 (34) 700.17 696.887412 (28)

2-Decalone 102,9 ← 92,8 38,0 ← 37,0 trans cis 1 cis 2 Broadband spectrum of 2-decalone 2 bar Ne; 200 µs FID  / MHz

2-Decalone All three trans- and cis-isomers identified in spectrum High spectral density would not allow for immidiate assignment of single lines Rapidly assigned due to wide overview and recognition of intensity patterns Conformer   theo. exp. trans A / MHz 2219.00 2229.28279 (57) DE=0 B / MHz 763.90 757.765693 (38) C / MHz 610.99 604.276312 (26) cis 2 1975.61 1992.82809 (35) DE=561.2 cm-1 867.57 853.595668 (48) 738.74 726.007789 (40) cis 1 2004.69 1990.2279 (11) DE=667.1 cm-1 852.51 847.213462 (34) 700.17 696.887412 (28)

Seven-membered rings: oxepane Common motif in biological systems Several conformations possible, twist-chair structures are the most stable Previously studied with various quantum chemical techniques Initial structures taken from Freeman et al. (B3LYP/6-311++G(d,p) for structure, CCSD(T)/6-311++G(d,p) for energies) B3LYP/CCSD(T): J. Dillen, Struct. Chem. 24 (2013), 751. B3LYP, CCD, CCSD, QCISD: Freeman et al., Intl. J. Quantum Chem. 108 (2007), 339. Semiemperical potential: D. F. Bocian, H. L. Strauss, J. Am. Chem. Soc. 99 (1977), 2876. P. Khalili, J. Chem. Phys. 138 (2013), 184110.

Oxepane – broadband spectrum 1 GHz sections out of the 2-26.5 GHz range allow for rapid assignment Linewidth: 13 kHz (FWHM) Repetition rate: 12 Hz n / GHz 30,320,2 200µs Doppler splitting from coaxial arrangement of molecular beam and MW propagation direction

Oxepane Experimental spectrum   GED XRD MW 𝒅 𝟏𝟐 / Å 1,419 1,430 1,397(17) 𝒅 𝟐𝟑 / Å 1,531 1,527 1,551(21) 𝒅 𝟑𝟒 / Å 1,525 1,523(4) 𝒅 𝟒𝟓 / Å 1,538(5) 𝒅 𝟓𝟔 / Å 1,530 1,528(4) 𝒅 𝟔𝟕 / Å 1,533 1,579(36) 𝒅 𝟕𝟏 / Å 1,428 1,374(37) 𝜶 𝟏𝟐𝟑 / ° 109,0 110,0 110,6(6) 𝜶 𝟐𝟑𝟒 / ° 112,2 114,1 114,6(6) 𝜶 𝟑𝟒𝟓 / ° 112,6 115,1 115,3(5) 𝜶 𝟒𝟓𝟔 / ° 111,9 113,3 112,9(4) 𝜶 𝟓𝟔𝟕 / ° 112,7 114,7 114,6(14) 𝜶 𝟔𝟕𝟏 / ° 113,8 114,6 114,6(3) 𝜶 𝟕𝟏𝟐 / ° 112,1 114,6(18) 𝝉 𝟏𝟐𝟑𝟒 / ° 77,0 73,0 70,6(12) 𝝉 𝟐𝟑𝟒𝟓 / ° -52,9 -51,0 -49,1(16) 𝝉 𝟑𝟒𝟓𝟔 / ° 71,9 68,4 68,0(11) 𝝉 𝟒𝟓𝟔𝟕 / ° -88,8 -83,9 -81,7(17) 𝝉 𝟓𝟔𝟕𝟏 / ° 36,1 34,1 30,5(39) 𝝉 𝟔𝟕𝟏𝟐 / ° 49,4 49,5 54,3(37) 𝝉 𝟕𝟏𝟐𝟑 / ° -102,7 -98,6 -100,2(17) Experimental spectrum High discrepancy between simulated and measured rotational spectrum (shifted by approx. 100 MHz) Easily assigned due to wide overview Isotopologues could be measured for rs structure and fitted to Kraitchman‘s equations 404 ← 313 414 ← 303 13C isotopologues ~100 MHz shift ×10 Theoretical prediction (MP2/6-311++G(d,p) ) GED: J. Dillen, H. J. Geise, J. Mol. Struct. 64 (1980), 239. XRD: P. Luger et al., Acta Cryst. C47 (1991), 102. J. Kraitchman, J. Am. J. Phys. 21 (1953), 17.

Summary The IMPACT FT-MW spectrometer provides High spectral resolution ( 13 kHz) High signal frequency determination accuracy Wide spectral range from 2 to 26.5 GHz Broad acquisition range of 1 GHz Advantages of the IMPACT scheme Phase invariance allows for averaging in the time domain Cheaper than chirp generation in arbitrary waveform generator and direct detection Easily adoptable to higher frequency ranges (20-40 GHz, 40-60 GHz) Applications Fast acquisition and interpretation of the rotational spectra of multi-conformational and/or flexible molecules Rapid identification of wide splittings, e.g. from internal rotation Determination of (hyper-)fine splitting constants Search for „unpredictable“ transition frequencies (e.g. avoided crossing in heavy atom diatomics)

Acknowledgements The Grabow group Montse Vallejo Jan Borter Special thanks to the mechanical and electronical workshop