MILLIMETER WAVE SPECTRUM OF NITROMETHANE Vadim Ilyushin Institute of Radio Astronomy of NASU, Kharkiv, Ukraine.
Previous work on the CH3NO2 rotational spectrum [1] E. Tannenbaum, R.D. Johnson, R.J. Myers, W.D. Gwinn, J. Chem. Phys. 22 (1954) 949. [2] E. Tannenbaum, R.J. Myers, W.D. Gwinn, J. Chem. Phys. 25 (1956) 42–47. [3] A.P. Cox, S. Waring, K.Morgenstern, Nature Physical Science Vol. 229 (1971) 22-23. [4] L. Engelbrecht, D. Sutter, H. Dreizler, Z. Natruforsch 28a (1973) 709-713 [4] A.P. Cox, S. Waring, J. Chem. Soc., Faraday Trans. 2 (68) (1972) 1060–1071. [5] F. Rohart, J. Mol. Spectrosc. 57 (1975) 301–311 [6] G.O. Sørensen, T. Pedersen, Stud. Phys. Theor. Chem. 23 (1983) 219–236. [7] G.O. Sørensen, T. Pedersen, H. Dreizler, A. Guarnieri, A.P. Cox, J. Mol. Struct. 97 (1983) 77–82. Previous Results in these papers: maximum frequency - 80 GHz, rotational quantum number range: J 29 and Ka 18.
Motivation V6 2 cm-1 = 3.46 D A = 13341 MHz B = 10545 MHz 100 200 300 400 500 600 700 800 900 cm-1 torsion m 1 2 3 4 5 6 7 8 9 10 11 12 13 (NO2)i (NO2)o (NO)s (C-N) SAV V6 2 cm-1 = 3.46 D A = 13341 MHz B = 10545 MHz C = 5876 MHz B1/B2 and E1 type levels are not populated due to spin statistics = stretch; = bend; = rock; a = asymmetric; s = symmetric; i = in-plane; o = out-of-plane. M.B. Dawadi, S. Twagirayezu, D.S. Perry, B. E. Billinghurst, J. Mol. Spectrosc. 315 (2015) 10–15
Modification of the RAM36 program V. Ilyushin, Z. Kisiel, L. Pszczółkowski, H. Mäder, J. T. Hougen // J. Mol. Spectrosc. Vol. 259, pp. 26-38 (2010). The RAM36 (rho-axis-method for 3 and 6-fold barriers) code realizes the Rho-axis-method approach for the molecules with the C3v top attached to a molecular frame of Cs or C2v symmetry and having 3- or 6-fold barrier to internal rotation respectively. The program carries out a global fit of rotational transitions in several torsional states simultaneously using a two step diagonalization procedure.
MW spectrometer in Kharkiv BWO, 34 – 150 GHz PLL IF = 25 MHz FM modulated synthesizer 25 MHz Klystron 3.4 – 5.2 GHz IF = 5 MHz Absorbing cell Amplifier Lock-in detector Sine wave synthesizer 7 – 120 KHz DAC DDS AD9851 30 – 60 MHz Band-pass amplifier 390-430 MHz Synthesizer 360 MHz Frequency divider f/2 Frequency Doubler (optional) Detector Schottky Reference synthesizer 390-430 MHz
Portion of the recorded spectrum of CH3NH2 around 134 GHz. 133840 134280 134720 135160 MHz Experiment Prediction
Summary of the Least Squares Fit Torsional state Measurement Precision m # Jmax rms(kHz) unc(kHz) # Jmax rms(kHz) 0 931 49 29.6 10 2957 49 9.8 1 1113 49 15.6 30 2202 50 26.2 2 1406 49 21.1 50 6 1 20.4 3 388 37 33.4 100 642 49 40.1 +3 1569 50 19.2 250 25 17 194.4 4 840 48 22.5 300 6 2 154.3 5 1317 45 21.8 6 1597 48 26.0 Overall rms: 25.9 kHz +6 398 43 29.0 Weighted rms: 0.89 7 403 40 21.2 Number of parameters: 93 8 630 41 46.5 m≠0 1416 45 23.4 Frequency range: 9 – 237 GHz (previous 9- 80 GHz ) Jmax =50, Kamax = 42 (previous Jmax = 29, Kamax = 18) Number of lines: 5838 (correspond to 4478 torsion-rotation transitions previous number – less than 200)
Conclusions A new study of the nitromethane (CH3NO2) spectrum in the millimeter wave frequency range up to 237 GHz has been carried out and a fit within experimental error has been achieved for the lowest 11 m torsional states of the molecule using the RAM approach. The RAM36 program is now capable to treat quadrupole hyperfine structure due to one nucleus with nonzero quadrupole moment in the first order of perturbation theory.
Thank you for your attention