Institut für Laserphysik

Slides:



Advertisements
Similar presentations
Creating new states of matter:
Advertisements

Trapped ultracold atoms: Bosons Bose-Einstein condensation of a dilute bosonic gas Probe of superfluidity: vortices.
Dynamics of Spin-1 Bose-Einstein Condensates
Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute Zero Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute.
Rotations and quantized vortices in Bose superfluids
Fermi-Bose and Bose-Bose quantum degenerate K-Rb mixtures Massimo Inguscio Università di Firenze.
Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center.
Coherence, Dynamics, Transport and Phase Transition of Cold Atoms Wu-Ming Liu (刘伍明) (Institute of Physics, Chinese Academy of Sciences)
Sound velocity and multibranch Bogoliubov - Anderson modes of a Fermi superfluid along the BEC-BCS crossover Tarun Kanti Ghosh Okayama University, Japan.
World of ultracold atoms with strong interaction National Tsing-Hua University Daw-Wei Wang.
World of zero temperature --- introduction to systems of ultracold atoms National Tsing-Hua University Daw-Wei Wang.
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
Fractional Quantum Hall states in optical lattices Anders Sorensen Ehud Altman Mikhail Lukin Eugene Demler Physics Department, Harvard University.
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
Temperature scale Titan Superfluid He Ultracold atomic gases.
Ultracold Fermi gases : the BEC-BCS crossover Roland Combescot Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris, France.
Stability of a Fermi Gas with Three Spin States The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites Yi Zhang John Huckans.
Selim Jochim, Universität Heidelberg
University of Trento INFM. BOSE-EINSTEIN CONDENSATION IN TRENTO SUPERFLUIDITY IN TRAPPED GASES University of Trento Inauguration meeting, Trento
Dynamics of Quantum- Degenerate Gases at Finite Temperature Brian Jackson Inauguration meeting and Lev Pitaevskii’s Birthday: Trento, March University.
Studying dipolar effects in degenerate quantum gases of chromium atoms G. Bismut 1, B. Pasquiou 1, Q. Beaufils 1, R. Chicireanu 2, T. Zanon 3, B. Laburthe-Tolra.
Universal thermodynamics of a strongly interacting Fermi gas Hui Hu 1,2, Peter D. Drummond 2, and Xia-Ji Liu 2 1.Physics Department, Renmin University.
Lectures on Quantum Gases Lectures G. Shlyapnikov 2015 年 6 月 10, 17, 25, 30 日, 下午 3:30-5:00 频标楼 4 楼报告厅 About the speaker : Director of Research at CNRS,
Bright and Gap Solitons and Vortex Formation in a Superfluid Boson-Fermion Mixture Sadhan K. Adhikari Institute of Theoretical Physics UNESP – São Paulo.
Ultracold Fermi gases University of Trento BEC Meeting, Trento, 2-3 May 2006 INFM-CNR Sandro Stringari.
Experiments with ultracold atomic gases
Quantum Gases: Past, Present, and Future Jason Ho The Ohio State University Hong Kong Forum in Condensed Matter Physics: Past, Present, and Future HKU.
Experiments with Fermi e Bose atomic gases in optical lattices Giovanni Modugno LENS, Università di Firenze, and INFM XXVII Convegno di Fisica Teorica,
Strongly interacting scale-free matter in cold atoms Yusuke Nishida March 12, MIT Faculty Lunch.
Experiments with Trapped Potassium Atoms Robert Brecha University of Dayton.
Few-body physics with ultracold fermions Selim Jochim Physikalisches Institut Universität Heidelberg.
Interference of Two Molecular Bose-Einstein Condensates Christoph Kohstall Innsbruck FerMix, June 2009.
Physics and Astronomy Dept. Kevin Strecker, Andrew Truscott, Guthrie Partridge, and Randy Hulet Observation of Fermi Pressure in Trapped Atoms: The Atomic.
Lecture IV Bose-Einstein condensate Superfluidity New trends.
„Fermi-Bose mixtures of 40 K and 87 Rb atoms: Does a Bose Einstein condensate float in a Fermi sea?" Klaus Sengstock Krynica, June 2005 Quantum Optics.
Prospects for ultracold metastable helium research: phase separation and BEC of fermionic molecules R. van Rooij, R.A. Rozendaal, I. Barmes & W. Vassen.
Experiments with an Ultracold Three-Component Fermi Gas The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites John Huckans.
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
Optical lattices for ultracold atomic gases Sestri Levante, 9 June 2009 Andrea Trombettoni (SISSA, Trieste)
Pairing Gaps in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems Cheng Chin JFI and Physics, University of Chicago Exp.: Rudolf.
Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica.
B. Pasquiou (PhD), G. Bismut (PhD) B. Laburthe, E. Maréchal, L. Vernac, P. Pedri, O. Gorceix (Group leader) Spontaneous demagnetization of ultra cold chromium.
D. Jin JILA, NIST and the University of Colorado $ NIST, NSF Using a Fermi gas to create Bose-Einstein condensates.
11/14/2007NSU, Singapore Dipolar Quantum Gases: Bosons and Fermions Han Pu 浦晗 Rice University, Houston, TX, USA Dipolar interaction in quantum gases Dipolar.
Jerzy Zachorowski M. Smoluchowski Institute of Physics, Jagiellonian University Nonlinear Spectroscopy of Cold Atoms, Preparations for the BEC Experiments.
Molecules and Cooper pairs in Ultracold Gases Krynica 2005 Krzysztof Góral Marzena Szymanska Thorsten Köhler Joshua Milstein Keith Burnett.
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
Soliton-core filling in superfluid Fermi gases with spin imbalance Collaboration with: G. Lombardi, S.N. Klimin & J. Tempere Wout Van Alphen May 18, 2016.
Functional Integration in many-body systems: application to ultracold gases Klaus Ziegler, Institut für Physik, Universität Augsburg in collaboration with.
Phase separation and pair condensation in spin-imbalanced 2D Fermi gases Waseem Bakr, Princeton University International Conference on Quantum Physics.
Agenda Brief overview of dilute ultra-cold gases
Center for Quantum Physics Innsbruck Center for Quantum Physics Innsbruck Austrian Academy of Sciences Austrian Academy of Sciences University strongly.
strongly interacting fermions: from spin mixtures to mixed species
Magnetization dynamics in dipolar chromium BECs
One-dimensional disordered bosons from weak to strong interactions
Dipolar chromium BECs de Paz (PhD), A. Chotia, B. Laburthe-Tolra,
ultracold atomic gases
BEC-BCS cross-over in the exciton gas
7. Ideal Bose Systems Thermodynamic Behavior of an Ideal Bose Gas
BOSE-EINSTEIN CONDENSATES A REVIEW OF EXPERIMENTAL RESULTS
Anderson localization of weakly interacting bosons
DILUTE QUANTUM DROPLETS
Bose-Einstein Condensation Ultracold Quantum Coherent Gases
Zhejiang Normal University
Novel quantum states in spin-orbit coupled quantum gases
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
One-Dimensional Bose Gases with N-Body Attractive Interactions
a = 0 Density profile Relative phase Momentum distribution
Presentation transcript:

Institut für Laserphysik Krynica, June 2005 Quantum Optics VI „Fermi-Bose mixtures of 40K and 87Rb atoms: Does a Bose Einstein condensate float in a Fermi sea?" Klaus Sengstock Mixtures of ultracold Bose- and Fermi-gases Bright Fermi-Bose solitons Dynamics of the system: e.g.: mean field driven collapse Institut für Laserphysik Universität Hamburg

Hamburg Cold Quantum Gas Group Spinor-BEC Fermi-Bose-Mixture BEC ‘in Space‘ Atom-Guiding in PBF

Hamburg Cold Quantum Gas Group Spinor-BEC Fermi-Bose-Mixture Poster by Silke Ospelkaus on Tuesday Poster by Jochen Kronjäger on Monday

Bose-Einstein Condensation Bose-Einstein distribution critical temperature for BEC S. N. Bose A. Einstein T>Tc T<Tc N0/N 1-(T/Tc)3 1 Tc T

Bose-Einstein Condensation Bose-Einstein distribution High-temperature effect !!! critical temperature for BEC T>Tc T<Tc N0/N 1-(T/Tc)3 1 Tc T

Fermions in a Harmonic Trap Fermi-Dirac distribution Fermi temperature E. Fermi P.A.M. Dirac T>TF T=0 f(e) T=0 T~TF 1 eF T>TF eF e

Fermions in a Harmonic Trap Fermi-Dirac distribution Quantum statistical effects also for T~TF, but more difficult to see... Fermi temperature T>TF T<TF f(e) T=0 T~TF 1 T>TF eF e

Fermionic Quantum Gases difficulty to reach low temperatures for Fermi gases: no s-wave scattering of identical fermions!  no thermalization in evaporative cooling a)  use different spin components (D. Jin et al. 98) b)  use e.g. a BEC to cool a Fermi sea (and look to the details...) thermal Bosons condensate fraction Fermions

e.g.: Momentum Distributions of Fermions and Bosons P(p) P(p) T>>Tc,TF p -pF pF p P(p) P(p) T<Tc,TF p p -pF pF P(p) P(p) T<<Tc,TF p p -pF pF

e.g.: Momentum Distributions of Fermions and Bosons P(p) P(p) T>>Tc,TF p -pF pF p P(p) P(p) T<Tc,TF p p -pF pF

e.g.: Superfluidity in Quantum Gases: a) Bosons drag free motion MIT C. Raman et al., PRL. 83, 2502-2505 (1999). scissors modes Oxford O.M. Maragò et al., PRL 84, 2056 (2000) vortices, vortex lattice JILA, ENS, MIT Image from: P. Engels and E. A. Cornell

Superfluidity in Quantum Gases: b) Fermions Cooper pairs - BCS superfluidity T0 exponentially difficult to reach (valid for kF|a|<<1) e.g.: kFa=-0.2 -> TBCS ~ 10-4 TF (very very small) (very) low-temperature effect

Superfluidity in Quantum Gases: b) Fermions ways out of it: manipulate TBCS using a Feshbach resonance BEC of molecules BEC/BCS crossover Duke ENS Innsbruck JILA MIT Rice use additional particles to mediate interactions - Bosons ? ...

  Fermi-Bose Mixtures boson mediated superfluidity L. Viverit, Phys. Rev. A 66, 023605 (2002) F. Matera, Phys. Rev. A 68, 043624 (2003) T. Swislocki, T. Karpiuk, M. Brewsczyk, Poster 1, Monday ... boson mediated superfluidity in a lattice F. Illuminati and A. Albus, Phys. Rev. Lett. 93, 090406 (2004) ...  interplay between tunneling and various on-site-interactions

Fermi-Bose Mixtures there is even more: special interest: mixtures in optical lattices  new phases, composite particles, ... Ubf Ubb 1 2 -1 -2 IIFD IISF IIFL IFL IDM IIDM mb/Ubb . composite fermions M. Lewenstein et al., Phys. Rev. Lett. 92, 050401 (2004) M. Cramer et al., Phys. Rev. Lett. 93, 190405 (2004)

Fermi-Bose Mixtures effective interactions: Bose-Bose int. Bose-Fermi int. bosons fermions new degrees of freedom due to additional interactions e.g.: 40K - 87Rb mixture: gB > 0 (aBB ~ 100 a0) gBF < 0 (aBF ~ -280 a0) tunable by Feshbach resonances! S. Inouye et al., PRL 93, 183201 (2004) see also: G. Modugno et al., Science 297, 2240 (2002)

Fermi-Bose Mixtures  detailed understanding of interactions and also of loss processes is necessary Bose-Fermi interaction physics - system boundary conditions - coupled excitations (e.g. exp. in Jin group, JILA and Inguscio group, LENS) - Bose-Fermi interactions - interspecies correlations - novel phases - heteronuclear molecules 6Li/7Li at Duke U., ENS Paris, Innsbruck U., Rice U. 6Li/23Na at MIT 40K/87Rb at LENS Florence, Jila Boulder, Hamburg U., ETH Zürich

Hamburg Setup two-species 2D-MOT flux: 87Rb ~ 5 · 109 s-1 40K ~ 5·106 s-1 two-species 3D-MOT Rb ~ 1010 K ~ 3·107 within 10..20 s in addition: dipole trap magnetic trap nax ~ 11 Hz (Rb) nrad ~ 260 Hz (Rb) soon: optical lattice

Hamburg Setup laser systems experimental setup Mai 2003 first BEC 7/2004 first degenerate Fermi gas 8/2004

Sympathetic Cooling 5x107 6Li at T~0.05 TF state of the art (temperature): 5x107 6Li at T~0.05 TF 1x106 40K at T~0.15 TF (for K-Rb cooling) nax=11Hz, nr=330Hz state of the art (particle numbers): nax=11Hz, nr=267Hz number of K-atoms only BEC: >5*106 only Fermions: >1*106 number of Rb-atoms

Attractive Boson-Fermion Interaction aK-Rb ~ -279 a0 + BEC = effective potential for fermions: Fermion cloud with BEC experimental signatures: Fermion cloud without BEC

Mean Field Instability of the System BEC BEC attraction of fermions Fermi-Sea collapse BEC density increase runaway

Collapse Experiments 7Li collapse 85Rb "Bosenova" Sackett et al., PRL 82, 876 (1999) J.M. Gerton et al., Nature 8, 692 (2000) 85Rb "Bosenova" Donley et al., Nature 412, 295 (2001) Images from: http://spot.colorado.edu/~cwieman/Bosenova.html 40K / 87Rb Fermi-Bose collapse G. Modugno et al., Science 297, 2240 (2002)

Fermi-Bose Mixtures in the Large Particle Limit: Local Collapse Dynamics

Fermi-Bose Mixtures in the Large Particle Limit: Collapse but...: is it just losses??  locally high density: enhanced two- and three-body losses??

Lifetime Regimes t = 197ms t = 21ms time/frequency scales: 3-body-loss -> collapse-time due to trap dynamics time/frequency scales: - nr(K) = 394 Hz - nax(K) = 17 Hz - thermalization 10..50 ms - collapse: ~ 20 ms - loss processes 100..200 ms loss and collapse dynamics can be distinguished!

3-Body Losses measurement of the 3-body KRb decay rate N 1 d r n , t 2 , t F model for 3-body inelastic decay in thermal mixture: integration over time: ln T dt -2.5 -2 -1.5 -1 -0.5 20 40 60 80 100 120 140 160 180 T ln N T ln N Result: K K cm 6 K ( +/- 0.2) 3.5 10 28 K Rb Rb s Measurement does not depend on K atom number calibration For 87 Rb |2,2> decay, we reproduce the value from Söding et al. [Appl. Phys. B69, 257 (1999)] T d 3 r n 2 r , t n r , t dt B F 10 38 m 6 s N t K

Fermi-Bose Mixtures in the Large Particle Limit: Stability Diagram NBoson stable mixture non stable mixture aKRb=-281 a0 (S. Inouye et al., PRL 93, 183201 (2004)) NFermion

Does a Bose Einstein condensate float in a Fermi sea? ... it depends ...

Solitons in Matter Waves   g>0 g<0 dark solitons filled solitons bright solitons quantum pressure interactions K.S. Strecker et al., Nature 417, 150 (2002) B. P. Anderson et al., PRL 86, 2926 (2001) gap solitons "negative mass" L. Khaykovich et al., Science 296, 1290 (2002) NSoliton< 104 S. Burger et al., PRL 83, 5198 (1999) quasi-1D regime collapse for Eint>Eradial J. Denschlag et al., Science 287, 97 (2000) B. Eiermann et al. PRL 92, 230401(2004)

1D: Bright Mixed ‘‘Solitons‘‘ Bose-Bose repulsion versus Fermi-Bose attraction our data after switching off the trap: behaviour in the trap: theory theory by T. Karpiuk, M. Brewczyk, M. Gaida, K. Rzazewski dynamics: constant envelope  simulation from M. Brewczyk et al. T. Karpiuk, M. Brewczyk, S. Ospelkaus-Schwarzer, K. Bongs, M. Gajda, and K. Rzążewski, PRL 93, 100401 (2004)

Collision simulation shows complex dynamics: - repulsive - shape oscillations - particle exchange Simulation from M. Brewczyk et al. fermionic character due to the Pauli-principle ?

effective interaction Bose-Fermi Mixtures with Attractive Interactions Physics in the High Density Limit effective interaction ("density") bright mixed soliton collapse attractive boson-induced BCS ? repulsive trap aspect ratio Influence of loss processes ?

Hamburg Team K. Se Kai Bongs - Atom optics V. M. Baev - Fibre lasers Spinor BEC: Jochen Kronjäger Christoph Becker Thomas Garl Martin Brinkmann Stefan Salewski Ortwin Hellmig Arnold Stark Sergej Wexler Oliver Back Gerald Rapior Fermi-Bose mixtures K-Rb: Silke Ospelkaus-Schwarzer Christian Ospelkaus Philipp Ernst Oliver Wille Manuel Succo Q. Gu - Theory BEC in Space: Anika Vogel Malte Schmidt Staff Victoria Romano Dieter Barloesius Reinhard Mielck Atom guiding in PCF: Stefan Vorath Peter Moraczewski

Hamburg Cold Quantum Gas Group Hamburg is a nice city... (for physics ) (and for visits!)