Newton’s 2nd Law of Motion (and a famous Obi Wan Kenobi saying!!)

Slides:



Advertisements
Similar presentations
FORCES and Newton’s 1 st Law. A force is a push or pull on an object which can cause the motion of the object to change. Forces cause accelerations! If.
Advertisements

Newton’s Laws Easy as apple pie!.
The Force Is with You. The student will demonstrate an understanding of motion, forces, and energy.
Please turn in your week 6 accountability sheet and pick up week 7. If you did not bring your workbook, share with a table partner.
Forces and Freebody Diagram Notes
Forces.
Chapter 4.1: Changes in Motion
Force and Its Representation Drawing Free- Body Diagrams Free-body diagrams are diagrams used to show the relative magnitude and direction of all forces.
Free-body diagrams Free-body diagrams are pictures that show the size and direction of all forces acting on an object.
AP Physics B Summer Course 年 AP 物理 B 暑假班 M Sittig Ch 10: Free Body Diagrams and Equilibrium.
Use g = 10.0 m/s 2 Forces Review Game. Question #1 A skydiver is descending with a constant velocity. Consider air resistance. Diagram the forces acting.
Review: Newton’s 1 st Law An object in motion stays in motion in a straight line, unless acted upon by unbalanced force. A push or pull will cause object.
Scalar Quantities  Measurements that are fully described by a magnitude (or numerical value) alone.  Examples: Mass- 70kg Speed- 45mph Distance- 100m.
Chapter 4 Changes in Motion Objectives
More Forces and Free Body Diagrams
Chapter 4 Forces Forces and Interaction Force – a “push or pull” Contact Force – you physically push on a wall Long-range Force – like magnets or gravity.
Newtons first law By Randy Hedlund South High School.
Forces and Free Body Diagrams. Common Forces Gravity- attractive force between two objects that have mass. AKA Weight To calculate Weight: –Force of Gravity.
Types of Forces Notes. Types of Forces  A force is a push or pull acting upon an object as a result of its interaction with another object. There are.
All About Forces h?v=HK8afQRrOck.
CHAPTER Changes in motion. Objectives Describe how force affects the motion of an object. Interpret and construct free body diagrams.
Solving Force Probmems Physics Mr. Maloney © 2002 Mike Maloney Objectives You will be able to  diagram Force problems  use FBDs to analyze and solve.
Free-body diagrams Free-body diagrams are used to show the relative magnitude and direction of all forces acting on an object.
What is a Force? A force is a push or pull upon an object resulting from the object's interaction with another object. It is a vector quantity. Whenever.
FORCE DIAGRAMS.
The Force Is with You SP1 SP1 – The student will analyze the relationships between force, mass, gravity and the motion of objects h. Determine the conditions.
Free Body Diagrams. Review: Newton’s 1 st Law An object in motion stays in motion in a straight line, unless acted upon by unbalanced force. A push or.
An egg is free-falling from a nest in a tree. Neglect air resistance
WARM UP: 1. Calculate the acceleration of a bag of softball gear weighing 50 N if pulled with a force of 25 N. 2. Calculate the force of a cars tires on.
FORCES AND FREE BODY DIAGRAMS  011/mar/04/brian-cox-forces-nature-video
Free Body Diagrams and Newton’s Laws Physics. Newton’s 1 st Law Newton’s 1 st Law An object in motion stays in motion in a straight line, unless acted.
The Force Is with You Newton’s 1 st Law An object in motion stays in motion in a straight line, unless acted upon by unbalanced force. A push or pull.
Objective – The student will demonstrate an understanding of motion, forces, and energy. The student knows that there is a relationship between force and.
Free Body Diagrams A force diagram, which is also known as a free body diagram, is a sketch in which all the force vectors acting on an object are drawn.
Unit #3: Newton's Laws Lesson 1: Newton’s 1st and 2nd Law of Motion
Forces.  A force is a push or pull upon an object resulting from the object's interaction with another object.  Whenever there is an interaction between.
Free Body Diagrams Unit V – Newton’s Laws of motion.
The Force Is with You FORCE DIAGRAMS Learning Objectives The learner will interpret free- body force diagrams The learner will be able to draw force.
Forces and the Laws of Motion Chapter 4. Forces and the Laws of Motion 4.1 Changes in Motion –Forces A force is a physical quantity that can affect.
The Force Is with You. The Force Is with You TAKS Objective Four TAKS Objective 4 – The student will demonstrate an understanding of motion, forces,
Forces and Motion Study Guide
Unit 6 Forces & Newton’s Laws.
Activator Write the question and answer:
Forces.
12/09 (p.66) Forces- Net force IQ: Copy the graph that shows the correct relationship between an object’s mass and distance from the earth’s center?
Unit V – Newton’s laws of motion
FORCES AND FREE BODY DIAGRAMS
Newton’s FIRST Law Of Motion.
Newton’s Laws.
Unit 3 - Forces and Motion
FORCES AND FREE BODY DIAGRAMS
Drawing Forces A girl is suspended motionless from the ceiling by two ropes. Diagram this.
Free Body Diagrams.
Force Diagrams.
Review: Newton’s 1st Law
Forces and Motion Study Guide
Forces and Motion Study Guide
Free-body diagrams Free-body diagrams are pictures that show the size and direction of all forces acting on an object.
FORCE – CAUSES CHANGES IN MOTION
Practice – Free Body Diagrams
Forces -Review- IS3.
Forces Unit 9 Lecture.
Forces and Newton’s Laws
DO NOW QUESTION What forces are present on the monkey?
Free Body Diagrams.
Free Body Diagrams.
Warm-up What forces were acting on your rocket when it was moving up into the air? What forces were acting on your rocket when it was coming back down.
Learning Objectives The learner will interpret free-body force diagrams.
Forces.
The Force Is with You. The Force Is with You Free-body diagrams Free-body diagrams are used to show the relative magnitude and direction of all forces.
Presentation transcript:

Newton’s 2nd Law of Motion (and a famous Obi Wan Kenobi saying!!)

Learning Objective The student Jedis will be able to correctly interpret free-body force diagrams

Review: Newton’s 1st Law An object in motion stays in motion in a straight line, unless acted upon by unbalanced force. A push or pull will cause object to speed up, slow down, or change direction.

Review: Forces are Balanced Object at Rest V = zero m/s Objects in Motion V  ≠ zero m/s a = 0 m/s2 a = 0 m/s2 Stay at Rest Stay in Motion (same speed and direction

Basically, objects just keep on doing whatever they are doing unless they are acted upon by an unbalanced force.

Review: Common Examples Ketchup stays in the bottom (at rest) until you squeeze (external force) on the end of the packet. A headrest in a car prevents whiplash injuries during a rear-end collision (your head goes forward and then jerks backward).

Free-body diagrams Free-body diagrams are used to show the relative magnitude and direction of all forces acting on an object.

This diagram shows four forces acting upon an object This diagram shows four forces acting upon an object. There aren’t always four forces, For example, there could be one, two, or three forces.

Problem 1 An egg is free-falling from a nest in a tree. Draw a free-body diagram showing the forces involved. Try to depict the relative magnitudes of the forces by the length of the arrows.

Answer Gravity and air resistance are the forces acting on the egg as it falls.

Problem 2 A flying squirrel is gliding (no wing flaps) from a tree to the ground at constant velocity. Consider air resistance. A free body diagram for this situation looks like…

Answer Gravity pulls down on the squirrel while air resistance keeps the squirrel in the air for a while.

Problem 3 A rightward force is applied to a book in order to slide it across a desk. Consider frictional forces. Neglect air resistance. Construct a free-body diagram. Let’s see what this one looks like.

Note the applied force arrow pointing to the right Note the applied force arrow pointing to the right. Notice how friction force points in the opposite direction. Finally, there is still gravity and normal forces involved.

Problem 5 A skydiver is descending with a constant velocity. Consider air resistance. Draw a free-body diagram.

Answer Gravity pulls down on the skydiver, while air resistance pushes up as she falls.

Problem 6 A man drags a sled across loosely packed snow with a rightward acceleration. Draw a free-body diagram.

The rightward force arrow points to the right The rightward force arrow points to the right. Friction slows his progress and pulls in the opposite direction. Since there is not information that we are in a blizzard, normal forces still apply as does gravitational force since we are on planet Earth.

Problem 7 A football is moving upwards toward its peak after having been booted by the punter. Draw a free-body diagram.

Answer The force of gravity is the only force described. It is not a windy day (no air resistance).

Problem 8 A car runs out of gas and is coasting down a hill.

Answer Even though the car is coasting down the hill, there is still the dragging friction of the road (left pointing arrow) as well as gravity and normal forces.

Net Force Now let’s take a look at what happens when unbalanced forces do not become completely balanced (or cancelled) by other individual forces. An unbalanced forces exists when the vertical and horizontal forces do not cancel each other out.

Example 1 Notice the upward force of 1200 Newtons (N) is more than gravity (800 N). The net force is 400 N up.

Example 2 Notice that while the normal force and gravitation forces are balanced (each are 50 N) the force of friction results in unbalanced force on the horizontal axis. The net force is 20 N left.

Another way to look at balanced and unbalanced forces

Balanced or unbalanced?

Balanced or Unbalanced?

And remember…