Tamás Vörös, György Tarczay

Slides:



Advertisements
Similar presentations
CONCENTRATION, MATRIX AND WAVELENGTH DEPENDENCE IN THE PHOTOLYSIS EFFICIENCY OF MATRIX-ISOLATED BIACETYL CONCENTRATION, MATRIX AND WAVELENGTH DEPENDENCE.
Advertisements

Is the Equilibrium Structure of BeOH Linear or Bent? Kyle Mascaritolo Dr. Michael Heaven.
Observation of the Infrared Spectrum of SiC 5 T. H. Le and W. R. M. Graham Molecular Physics Lab Texas Christian University 66 th International Symposium.
Lecture 5 An Introduction to Spectroscopy Electromagnetic radiation, electromagnetic wave Emission, absorption, fluorescence.
Electronic transitions of ScP N. Wang, Y. W. Ng, K. F. Ng, and A. S.-C. Cheung Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong.
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Microscopic Systems Division of the Institute.
IR EMISSION SPECTROSCOPY OF AMMONIA: LINELISTS AND ASSIGNMENTS. R. Hargreaves, P. F. Bernath Department of Chemistry, University of York, UK N. F. Zobov,
Matrix isolation and computational study of iso-difluorodibromomethane (F 2 CBr-Br): A route to molecular products in CF 2 Br 2 Photolysis Lisa George,
DENNIS J. CLOUTHIER, ROBERT GRIMMINGER, and BING JIN, Department of Chemistry, University.
Global analysis of broadband rotation and vibration-rotation spectra of sulfur dicyanide Zbigniew Kisiel, a Manfred Winnewisser, b Brenda P. Winnewisser,
Protonated Pyrene (1-C16H11+) and Its Neutral Counterpart (1-C16H11)
Georg-August-Universitaet Goettingen Tobias N. Wassermann Institute of Physical Chemistry Goettingen 19/06/ st Ohio State University Symposium on.
In-situ Photolysis of Methyl Iodide in Solid Para-hydrogen and Solid Ortho-deuterium Yuki Miyamoto 1, Mizuho Fushitani 2, Hiromichi Hoshina 3, and Takamasa.
High-resolution threshold photoionization and photoelectron spectroscopy of propene and 2-butyne Julie M. Michaud, Konstantina Vasilatou and Frédéric Merkt.
Pulsed-jet discharge matrix isolation and computational study of Bromine atom complexes: Br---BrXCH 2 (X=H,Cl,Br) OSU 66 th International Symposium on.
Electronic Spectroscopy of Palladium Dimer (Pd 2 ) 68th OSU International Symposium on Molecular Spectroscopy Yue Qian, Y. W. Ng and A. S-C. Cheung Department.
SPECTROSCOPY OF AND PHOTOINDUCED ELECTRON TRANSFER IN THE COMPLEXES OF C 2 H 4 WITH I AND I 2 Lisa George, Aimable Kalume, and Scott A. Reid Department.
UV/Vis Absorption Experiments on Mass Selected Cations by Counter- Ion Introduction in an Inert Neon Matrix Nathan Roehr University of Florida 67 th International.
Daniel Weidinger 1, Cassidy Houchins 2 and Jeffrey C. Owrutsky 3 (1)National Research Council Postdoctoral Researcher (2)SRA International (3)Chemistry.
ENERGY LEVELS OF THE NITRATE RADICAL BELOW 2000 CM -1 Christopher S. Simmons, Takatoshi Ichino and John F. Stanton Molecular Spectroscopy Symposium, June.
Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.
Study of the CH 2 I + O 2 Reaction with a Step-scan Fourier-transform Infrared Absorption Spectrometer: Spectra of the Criegee Intermediate CH 2 OO and.
POLAR (ACYCLIC) ISOMER OF FORMIC ACID DIMER: RAMAN SPECTROSCOPY STUDY
György Tarczay, Gábor Magyarfalvi
OSU International Symposium on Molecular Spectroscopy June 18 – 22, TF Infrared/Raman -- TF01, Tuesday, June 19, 2012.
Analysis of High Resolution Infrared Spectra of 1,1-Dichloroethylene in the 500 − 1000 cm −1 Range Rebecca A. Peebles, Sean A. Peebles Department of Chemistry.
© DFT And MP2 Vibrational Spectra And Assignments For Gauche N-Methyleneformamide CH2=N-CHO Badawi, HM ELSEVIER SCIENCE BV, JOURNAL OF.
1 The r 0 Structural Parameters of Equatorial Bromocyclobutane, Conformational Stability from Temperature Dependent Infrared Spectra of Xenon Solutions,
Ramya Nagarajan, Jie Yang and Dennis J. Clouthier A spectroscopic study of the linear-bent electronic transitions of jet-cooled HBCl and BCl 2 And The.
Fourier Transform Emission Spectroscopy of the G 3  -X 3 , C 3  -X 3  and G 3  -C 3  systems of CoCl R. S. Ram Department of Chemistry, University.
FAST SCAN SUBMILLIMETER SPECTROSCOPIC TECHNIQUE (FASSST). IVAN R. MEDVEDEV, BRENDA P. WINNEWISSER, MANFRED WINNEWISSER, FRANK C. DE LUCIA, DOUGLAS T. PETKIE,
HOT EMISSION SPECTRA FOR ASTRONOMICAL APPLICATIONS: CH 4 & NH 3 R. Hargreaves, L. Michaux, G. Li, C. Beale, M. Irfan and P. F. Bernath 1 Departments of.
Infrared Spectroscopy: Comparison of Transmission and ATR Techniques Matt Herring Lewis University.
THE ANALYSIS OF 2ν3 BAND OF HTO
ANH T. LE, GREGORY HALL, TREVOR SEARSa Division of Chemistry
Tamás Vörös, Győző György Lajgút, Gábor Magyarfalvi, György Tarczay
~ ~ DETERMINATION OF THE TRANSITION DIPOLE MOMENT OF THE A - X
Infrared Spectroscopy of CH2Cl in Solid Parahydrogen
Nonradiative Decay Route of Cinnamate Derivative studied by  Frequency and Time Domain Laser Spectroscopy in the gas phase, Matrix Isolation FTIR Spectroscopy.
Helen K. Gerardi1, Andrew F. DeBlase1, Xiaoge Su2, Kenneth D
& DETECTION AND CHARACTERIZATION OF THE STANNYLENE (SnH2) FREE RADICAL.
Andrew J. Wilson and Prashant K. Jain Department of Chemistry
Morgan E. Balabanoff and David T. Anderson
Carlos Cabezas and Yasuki Endo
International Symposium on Molecular Spectroscopy
Ab initio Electronic and Rovibrational Structure of Fulminic Acid
INFRARED SPECTROSCOPY OF DISILICON-CARBIDE, Si2C
Doppler-free two-photon absorption spectroscopy of vibronic excited states of naphthalene assisted by an optical frequency comb UNIV. of Electro-Communications.
69th annual international symposium on molecular spectroscopy
Michael N. Sullivan*, Jacob T. Stewart†, Michael C. Heaven*
Infrared Matrix-isolation Study of New Noble-gas Compounds
GEORG MELLAU1,2 and ROBERT FIELD2
Tokyo Univ. Science Mitsunori Araki, Yuki Matsushita, Koichi Tsukiyama
High Resolution Laser Spectroscopy of Iridium Monofluoride
An Analysis of the Rotation Spectrum of Acetonitrile (CH3CN) in Excited Vibrational States Christopher F. Neese, James McMillian, Sarah Fortman, Frank.
Photo-oxidation of 2-(1H-inden-1-ylidene)-1-methyl-1,2-dihydropyridine (IMDP) S. Cogan and Y. Haas The Farkas Center for Light Induced Processes, Physical.
Single Vibronic Level (SVL) emission spectroscopy of CHBr: Vibrational structure of the X1A and a3A  states.
Bob Grimminger and Dennis Clouthier
(Kobe Univ. ) Takumi Nakano, Ryo Yamamoto, Shunji Kasahara
Molecular Mechanism of Hydrogen-Formation in Fe-Only Hydrogenases
Laser spectroscopy and ab initio calculations on TaF
THE STUDY OF ACENAPHTHENE AND ITS COMPLEXATION WITH WATER
IR Spectra of CH2OO at resolution 0
Fourier Transform Emission Spectroscopy of CoH and CoD
Observation of Trans-Ethanol and
Threshold Ionization and Spin-Orbit Coupling of CeO
Fourier Transform Infrared Spectral
→ Δ N≡C−S−C≡N N≡C−N=C=S King, Kroto and Landsberg J
F H F O Semiexperimental structure of the non rigid BF2OH molecule (difluoroboric acid) by combining high resolution infrared spectroscopy and ab initio.
71st ISMS UV Photodissociation Spectroscopy of Temperature-Controlled Hydrated Phenol Cluster Cation Itaru KURUSU, Reona YAGI, Yasutoshi KASAHARA, Haruki.
Presentation transcript:

Tamás Vörös, György Tarczay Matrix Isolation and Computational Study of [2C, 2N, X] (X = S, Se) Isomers Tamás Vörös, György Tarczay Institute of Chemistry, Eötvös University Budapest, Hungary

Outline of the presentation Introduction, goals of our studies Computational results Experimental results Summary

Outline of the presentation Introduction, goals of our studies Computational results Experimental results Summary

Introduction Early 19th century: Wöhler: Ag-cyanate (AgOCN) Liebig: Ag-fulminate (AgCNO) Isomerism (Berzelius) Presently:

Introduction Sgr B2: HNCO HOCN HNCS HSCN TCM-1: HCNO

Introduction [1] AgCN + SCl2 NCSCN + 2 AgCl [2] AgNCSe + I2 NCSeSeCN + 2 AgI NCSeCN + (NCSe)2Se [1a] C. J. Burchell, P. Kilian, A. M. Z. Slawin, J. D. Woolins; Inorg. Chem., 45 (2006) 710-716. [1b] Z. Kisiel et al.; J. Phys. Chem. A, 117 (2013) 13815-13824. [2] F. Cataldo, Polyhedron, 19 (2000) 681-688.

Goals of our studies To study the [2C, 2N, X] (X = S, Se) isomers using quantum-chemical methods to compute: - equilibrium structures, relative energies - harmonic and anharmonic wavenumbers, IR intensities and UV excitation energies using matrix-isolation technique to: - supplement the condensed-phase IR spectra of NCXCN - generate and spectroscopically identify new isomers from the NCXCN isomer

Outline of the presentation Introduction, goals of our studies Computational results Experimental results Summary

Equilibrium structuresa, relative energiesb a CCSD(T)/aug-cc-pVTZ b ΔE (CCSD(T)/aug-cc-pVTZ) + ΔZPVE (CCSD(T)/aug-cc-pVTZ)

Equilibrium structures NCCNO CNCNS NCNCSe MP2/6-31G* [3] bent, quasilinear bent linear CCSD(T)/ aug-cc-pVTZ [3] M. Feher, T. Pasinszki, T. Veszpremi, Inorg. Chem., 34 (1995) 945-951.

IR wavenumbers and intensitiesa – [2C, 2N, S] NCNCS NCSCN NCCNS NCSNC NCC(NS) 2247 (459) 2181 (0.3) 2229 (719) 2161 (0.7) 2238 (12) 2013 (1229) 2171 (0.1) 2085 (274) 2033 (217) 1705 (1) 1177 (17) 650 (2) 1073 (100) 679 (11) 961 (50) 658 (3) 649 (7) 558 (32) 630b (20) 631 (4) 470 (40) 487 (1) 377 (0.005) 457b (3) 513 (4) 447 (3) 359 (0) 372 (15) 358 (2) 506 (0.1) 442 (10) 349 (4) 77 (10) 242 (0.01) 363 (10) 423 (7) 309 (2) 239 (2) 220 (15) 84 (4) 120 (8) 110 (6) 164 (6) a) CCSD(T)/aug-cc-pVTZ harmonic wavenumbers + CCSD(T)/aug-cc-pVDZ anharm. contributions b) CCSD(T)/aug-cc-pVTZ harmonic wavenumbers + CCSD(T)/cc-pVDZ anharm. contributions (IR intensities: harmonic CCSD(T)/aug-ccpVTZ)

IR wavenumbers and intensities – [2C, 2N, S] CNNCSa CNCNSb CNSNCa CNC(NS)a 2097 (4) 2291 (418) 2032 (86) 2084 (419) 1891 (1040) 2010 (302) 2003 (371) 1698 (10) 1094 (21) 1108 (147) 693 (23) 1038 (107) 719 (18) 564 (36) 685 (47) 668 (7) 522 (42) 349 (6) 414 (7) 486 (14) 418 (0.2) 266 (0.002) 255 (0.00) 479 (6) 308 (9) 70 (11) 244 (0.06) 327 (2) 273 (1) 195 (0.08) 170 (5) 111 (3) 105 (4) 143 (3) a) CCSD(T)/aug-cc-pVTZ harmonic wavenumbers + CCSD(T)/aug-cc-pVDZ anharm. contributions b) CCSD(T)/aug-cc-pVTZ harmonic wavenumbers (IR intensities: harmonic CCSD(T)/aug-ccpVTZ)

IR wavenumbers and intensitiesa – [2C, 2N, Se] NCNCSe NCSeCN NCCNSe NCSeNC NCC(NSe) 2257 (617) 2176 (2) 2222 (817) 2160 (2) 2233 (10) 2012 (1232) 2168 (1) 2088 (340) 2039 (241) 1702 (4) 1106 (16) 547 (6) 1003 (65) 551 (17) 930 (48) 510 (3) 528 (6) 406 (29) 533 (14) 587 (14) 434 (28) 439 (1) 393 (0.02) 406 (2) 501 (0.01) 429 (8) 330 (0.0) 352 (21) 325 (2) 434 (1) 404 (17) 316 (3) 94 (9) 220 (0.004) 350 (12) 387 (0.3) 282 (1) 215 (2) 217 (14) 65 (5) 104 (7) 97 (5) 142 (5) a) CCSD(T)/aug-cc-pVTZ harmonic wavenumbers + CCSD(T)/aug-cc-pVDZ anharm. contributions b) CCSD(T)/aug-cc-pVTZ harmonic wavenumbers + CCSD(T)/cc-pVDZ anharm. contributions (IR intensities: harmonic CCSD(T)/aug-ccpVTZ)

IR wavenumbers and intensitiesa – [2C, 2N, Se] CNNCSe CNCNSe CNSeNC CNC(NSe) 2109 (7) 2226 (461) 2040 (120) 2092 (426) 1859 (1032) 1972 (305) 2017 (396) 1702 (6) 1023 (30) 1033 (109) 565 (17) 1002 (113) 619 (42) 369 (30) 549 (43) 605 (24) 444 (36) 334 (15) 346 (6) 457 (4) 380 (0.02) 275 (0.5) 229 (0.0) 420 (8) 299 (9) 96 (8) 219 (0.05) 303 (2) 270 (1) 179 (0.05) 172 (5) 99 (4) 94 (4) 132 (2) a) CCSD(T)/aug-cc-pVTZ harmonic wavenumbers + CCSD(T)/aug-cc-pVDZ anharm. contributions (IR intensities: harmonic CCSD(T)/aug-ccpVTZ)

Outline of the presentation Introduction, goals of our studies Computational results Experimental results Summary

Preparation of NCSCN 2 AgCN + SCl2 = NCSCN + 2 AgCl [1a] [1b] Solvent 40 cm3 CH2Cl2 200 cm3 CS2 Amounts of the reactants 1.813 g AgCN, 0.4 cm3 SCl2 26.5 g AgCN, 10.0 cm3 SCl2 Time of the reaction 60 min 30 min Temperature during the reaction 0 °C 30 °C [1a] C. J. Burchell, et al., Inorg. Chem., 45 (2006) 710-716. [1b] Z. Kisiel et al.; J. Phys. Chem. A, 117 (2013) 13815-13824.

MI-IR spectra of NCSCN in argon in krypton CCSD(T)/aug-cc-pVTZ harmonic wavenumbers + CCSD(T)/aug-cc-pVDZ anharmonic contributions (IR intensities: harmonic CCSD(T)/aug-ccpVTZ)

MI-IR spectra of NCSCN Computeda Experimental Assignment Ar matrix Kr matrix KBr pellet [1a] KBr pellet [2] 2666 (0.3) 2681.4 (2) - ν3 + ν1 2527 (0.3) 2542.2 (3) 2538.3 (2) ν6 + ν1 2527 (0.4) 2540.9 (2) 2536.2 (3) ν7 + ν5 2487 (0.2) 2502.1 (1) 2498.3 (1) ν9 + ν1 2476 (0.2) 2491.3 (2) 2487.3 (1) ν9 + ν7 2185 (0.3) 2192.9 (2), 2190.2 (2) 2188.9 (3) ν1 CN str. 2171 (0.1) 2181.9 (4), 2178.8 (7) 2177.8 (8) 2184 vs 2180 s ν7 CN str. 967 (0.1) 948.6 (3) ν9 + ν2 651 (2) 680.1 (100) 678.3 (100) 697 m 685 m ν8 CS str. 650 (7) 677.1 (56) 676.3 (52) 670 m ν2 CS str. 487 (1) 465 w ν3 SCN bend. a (CCSD(T)/aug-cc-pVTZ harmonic wavenumbers + CCSD(T)/aug-cc-pVDZ anharmonic contributions (IR intensities: harmonic CCSD(T)/aug-ccpVTZ))

Photolysis of NCSCN in argon 254 nm photo. – deposited BBUV – 254 nm photo. and d) NCNCS and NCSNC (CCSD(T)/aug-cc-pVTZ harmonic wavenumbers + CCSD(T)/aug-cc-pVDZ anharmonic contributions (IR intensities: harmonic CCSD(T)/aug-ccpVTZ))

Photolysis of NCSCN in argon Wavenumber / cm–1 k / min–1 1185.0 0.00063 ± 0.00002 1994.9 0.00065 ± 0.00002 2256.6 0.00065 ± 0.000005 2367.4 0.00060 ± 0.00006 2689.6 0.00065 ± 0.00004 2045.7 0.00106 ± 0.000009 690.8 0.00097 ± 0.00006 673.1 0.00101 ± 0.00003

Photolysis of NCSCN in krypton 254 nm photo. – deposited BBUV – 254 nm photo. and d) NCNCS and NCSNC (CCSD(T)/aug-cc-pVTZ harmonic wavenumbers + CCSD(T)/aug-cc-pVDZ anharmonic contributions (IR intensities: harmonic CCSD(T)/aug-ccpVTZ))

Photolysis of NCSCN: NCSNC Computeda Experimental Assignment Ar matrix Kr matrix 2161 (0.7) - ν1 CN str. 2033 (217) 2045.7 (68), 2043.4 (32)b 2043.1 (100) ν2 NC str. 750 (14) 2ν8 728 (28) 690.8 (12) 691.2 (1) ν9 + ν5 679 (11) 673.1 (4) 689.1 (2) ν4 NS str. 630 (20) ν3 SC str. 457 (3) ν5 SCN bend. 358 (2) c ν8 SCN bend. 242 (0.01) ν9 SNC bend. 239 (2) ν6 SNC bend. 110 (6) ν7 NSN def. CCSD(T)/aug-cc-pVTZ harmonic wavenumbers + CCSD(T)/aug-cc-pVDZ anharmonic contributions (IR intensities: harmonic CCSD(T)/aug-cc-pVTZ) Site split bands. Not in the measured spectral region.

Photolysis of NCSCN: NCNCS Computeda Experimental Assignment Ar matrix Kr matrix gas [d] gas [e] 2675 (38) 2689.6 (3) 2683.1 (3) - ν4 + ν2 2355 (89) 2367.4 (2) 2368.0 (3) 2ν3 2247 (459) 2256.6 (32) 2251.7 (42) 2260.9 2240 ν1 NC str. 2013 (1229) 1994.9 (94), 1992.1 (6)b 1995.8 (100) 2016.4 1920 ν2 NC str. 1177 (17) 1185.0 (0.7) 1185.6 (0.8) 1105 ν3 CS str. 658 (3) ν4 CN str. 470 (40) ν5 NCN bend. 447 (3) ν8 NCN bend. 442 (10) ν6 NCS bend. 423 (7) ν9 NCS bend. 84 (4) c ν7 CNC def. CCSD(T)/aug-cc-pVTZ harmonic wavenumbers + CCSD(T)/aug-cc-pVDZ anharmonic contributions (IR intensities: harmonic CCSD(T)/aug-cc-pVTZ) b) Site split bands. c) Not in the measured spectral region. d) DeVore, T. C. J. Mol. Struct. 1987, 162, 287. e) Neidlein R.; Reuter, H. G. Arch. Pharm. 1975, 308, 189.

Preparation of NCSeCN [2] KNCSe + CH3COOAg = AgNCSe + CH3COOK AgNCSe + I2 = NCSeSeCN + 2 AgI 2 NCSeSeCN = NCSeCN + (NCSe)2Se Raman spectrum of NCSeCN: MS spectrum of NCSeCN: [2] F. Cataldo, Polyhedron, 19 (2000) 681-688.

MI-IR spectra of NCSeCN in argon in krypton CCSD(T)/aug-cc-pVTZ harmonic wavenumbers + CCSD(T)/aug-cc-pVDZ anharmonic contributions (IR intensities: harmonic CCSD(T)/aug-ccpVTZ)

MI-IR spectra of NCSeCN Comp.a Experimental Assignment Ar Kr KBr pellet [d] 2704 (0.1) 2699.3 (1) - ν2 + ν1 2613 (0.2) 2619.6 (1) 2617.7 (2) ν3 + ν1 2495 (0.4) 2510.2 (0.7) 2499.8 (1) ν7 + ν5 2489 (0.3) 2502.6 (4) 2497.0 (0.8) ν6 + ν1 2455 (0.1) 2464.7 (1) 2462.0 (1) ν9 + ν1 2447 (0.2) 2455.7 (2) 2453.4 (1) ν9 + ν7 2176 (2) 2186.3 (5), 2183.1 (20)b 2182.7 (5), 2181.6 (10)b 2183 m ν1 CN str. 2168 (1) 2174.0 (10) 2173.9 (2), 2172.3 (4)b 2175 m ν7 CN str. 581 (5) 573.6 (14) 573.1 (11) 2ν9 547 (6) 527.5 (1), 526.1 (62), 524.4 (37)b 523.0 (18), 524.2 (21), 525.4 (35), 526.7 (26)b 516 vs ν8 CSe str. 528 (6) 522.6 (17), 521.0 (1)b 520.8 (14), 519.3 (1)b ν2 CSe str. 439 (1) 436 m ν3 SeCN b. CCSD(T)/aug-cc-pVTZ harmonic wavenumbers + CCSD(T)/aug-cc-pVDZ anharmonic contributions (IR intensities: harmonic CCSD(T)/aug-cc-pVTZ) Site split bands. Not in the measured spectral region. E. E. Aynsley, N. N. Greenwood, J. Sprague; J. Chem. Soc., (1964) 704.

Photolysis of NCSeCN in argon 254 nm photo. – deposited BBUV – 254 nm photo. and d) NCNCS and NCSNC (CCSD(T)/aug-cc-pVTZ harmonic wavenumbers + CCSD(T)/aug-cc-pVDZ anharmonic contributions (IR intensities: harmonic CCSD(T)/aug-ccpVTZ))

Photolysis of NCSeCN in krypton 254 nm photo. – deposited BBUV – 254 nm photo. and d) NCNCS and NCSNC (CCSD(T)/aug-cc-pVTZ harmonic wavenumbers + CCSD(T)/aug-cc-pVDZ anharmonic contributions (IR intensities: harmonic CCSD(T)/aug-ccpVTZ))

Photolysis of NCSeCN: NCSeNC Computeda Experimental Assignment Ar matrix Kr matrix 2160 (2) - ν1 CN str. 2039 (241) 2055.3 (49), 2049.6 (51)b 2047.5 ν2 NC str. 551 (17) ν3 SeC str. 533 (14) ν4 NSe str. 406 (2) ν5 SeCN bend. 325 (2) c ν8 SeCN bend. 220 (0.004) ν9 SeNC bend. 215 (2) ν6 SeNC bend. 97 (5) ν7 NSeN def. CCSD(T)/aug-cc-pVTZ harmonic wavenumbers + CCSD(T)/aug-cc-pVDZ anharmonic contributions (IR intensities: harmonic CCSD(T)/aug-cc-pVTZ) Site split bands. Not in the measured spectral region.

Photolysis of NCSeCN: NCNCSe Computeda Experimental Assignment Kr matrix 2257 (617) 2260.9 (52) ν1 NC str. 2012 (1232) 1970.7 (89), 1965.7 (11) ν2 NC str. 1106 (16) - ν3 CSe str. 510 (3) ν4 CN str. 434 (28) ν8 NCN bend. 429 (8) ν5 NCN bend. 404 (17) b ν6 NCSe bend. 387 (0.3) ν9 NCSe bend. 65 (5) ν7 CNC def. CCSD(T)/aug-cc-pVTZ harmonic wavenumbers + CCSD(T)/aug-cc-pVDZ anharmonic contributions (IR intensities: harmonic CCSD(T)/aug-cc-pVTZ) Not in the measured spectral region.

Outline of the presentation Introduction, goals of our studies Computational results Experimental results Summary

Summary

Thank you for your attention!

Instruments Matrix-isolation setup: Lowest temperature: 8 K Cryostat: Closed-cycle He (Air Products Displex DE 202) Windows: CsI (for IR), NaCl (for UV) IR spectrometer: Type: IFS 28 FT-IR Source: Globar Detector: DTGS Best resolution: 1 cm-1 Lamp: Cathodeon HPK 125 W high-pressure Hg lamp + Melles Griot interference filters

UV excitation energiesa – [2C, 2N, S] NCNCS NCSCN NCCNS NCSNC NCC(NS) CNNCS CNCNS CNC(NS) CNSNC 286 (0.0000) 231 (0.0016) 364 (0.0000) 267 (0.0003) 456 (0.0040) 343 (0.0003) 354 (0.0000) 485 (0.0005) 281 (0.0000) 261 (0.0001) 206 (0.0002) 203 (0.0019) 345 (0.0024) 262 (0.0028) 347 (0.0000) 313 (0.0040) 215 (0.0032) 245 (0.0001) 213 (1.3034) 249 (0.0007) 218 (0.0005) 226 (1.1834) 237 (0.0003) 206 (0.0048) 235 (0.0000) 224 (0.0054) 218 (0.0003) 209 (0.0483) 201 (0.0416) 213 (0.0501) EOMEE-CCSD/aug-cc-pVTZ excitation energies (oscillator strengths: TD-DFT B3LYP/aug-cc-pVTZ)

UV excitation energiesa – [2C, 2N, Se] NCNCSe NCSeCN NCCNSe NCSeNC NCC(NSe) CNNCSe CNCNSe CNC(NSe) CNSeNC 311 (0.0000) 255 (0.0000) 395 (0.0000) 200 (0.0002) 263 (0.0003) 220 (0.0001) 206 (0.0000) 273 (0.0003) 313 (0.0000) 290 (0.0001) 212 (0.0026) 388 (0.0000) 203 (0.0000) 232 (0.0001) 276 (0.0001) 247 (0.0000) 201 (0.0000) 245 (1.0828) 206 (0.0762) EOMEE-CCSD/aug-cc-pVTZ excitation energies (oscillator strengths: TD-DFT B3LYP/aug-cc-pVTZ)

Raman wavenumbers and intensitiesa – [2C, 2N, S] NCNCS NCSCN NCCNS NCSNC NCC(NS) 2247 (411) 2181 (100) 2229 (516) 2161 (81) 2238 (139) 2013 (6) 2171 (30) 2085 (19) 2033 (68) 1705 (59) 1177 (26) 650 (22) 1073 (1) 679 (23) 961 (47) 658 (75) 649 (1) 558 (79) 630b (15) 631 (66) 470 (16) 487 (19) 377 (2) 457b (23) 513 (5) 447 (12) 359 (8) 372 (59) 358 (6) 506 (41) 442 (23) 349 (4) 77 (61) 242 (18) 363 (126) 423 (2) 309 (0.1) 239 (7) 220 (9) 84 (273) 120 (190) 110 (228) 164 (95) a) CCSD(T)/aug-cc-pVTZ harmonic wavenumbers + CCSD(T)/aug-cc-pVDZ anharm. contributions b) CCSD(T)/aug-cc-pVTZ harmonic wavenumbers + CCSD(T)/cc-pVDZ anharm. contributions (Raman intensities: B3LYP/aug-cc-pVTZ)

Raman wavenumbers and intensities – [2C, 2N, S] CNNCSa CNCNSb CNSNCa CNC(NS)a 2097 (352) 2291 (532) 2032 (147) 2084 (171) 1891 (5) 2010 (432) 2003 (45) 1698 (51) 1094 (32) 1108 (1) 693 (27) 1038 (45) 719 (23) 564 (62) 685 (4) 668 (61) 522 (94) 349 (28) 414 (31) 486 (50) 418 (0.03) 266 (91) 255 (25) 479 (2) 308 (38) 70 (15) 244 (5) 327 (105) 273 (33) 195 (8) 170 (18) 111 (336) 105 (259) 143 (101) a) CCSD(T)/aug-cc-pVTZ harmonic wavenumbers + CCSD(T)/aug-cc-pVDZ anharm. contributions b) CCSD(T)/aug-cc-pVTZ harmonic wavenumbers (Raman intensities: B3LYP/aug-cc-pVTZ)

Raman wavenumbers and intensitiesa – [2C, 2N, Se] NCNCSe NCSeCN NCCNSe NCSeNC NCC(NSe) 2257 (531) 2176 (95) 2222 (650) 2160 (80) 2233 (165) 2012 (10) 2168 (34) 2088 (18) 2039 (55) 1702 (54) 1106 (13) 547 (46) 1003 (1) 551 (83) 930 (56) 510 (122) 528 (7) 406 (91) 533 (35) 587 (57) 434 (15) 439 (22) 393 (64) 406 (18) 501 (4) 429 (0.7) 330 (8) 352 (0.3) 325 (7) 434 (87) 404 (0.9) 316 (8) 94 (4) 220 (31) 350 (137) 387 (6) 282 (0.3) 215 (7) 217 (15) 65 (3) 104 (206) 97 (276) 142 (110) a) CCSD(T)/aug-cc-pVTZ harmonic wavenumbers + CCSD(T)/aug-cc-pVDZ anharm. contributions b) CCSD(T)/aug-cc-pVTZ harmonic wavenumbers + CCSD(T)/cc-pVDZ anharm. Contributions (Raman intensities: B3LYP/aug-cc-pVTZ)

Raman wavenumbers and intensitiesa – [2C, 2N, Se] CNNCSe CNCNSe CNSeNC CNC(NSe) 2109 (467) 2226 (702) 2040 (112) 2092 (211) 1859 (9) 1972 (565) 2017 (42) 1702 (48) 1023 (24) 1033 (5) 565 (105) 1002 (43) 619 (11) 369 (65) 549 (27) 605 (88) 444 (142) 334 (76) 346 (20) 457 (1) 380 (0.07) 275 (33) 229 (38) 420 (84) 299 (44) 96 (16) 219 (14) 303 (106) 270 (41) 179 (14) 172 (26) 99 (398) 94 (325) 132 (124) a) CCSD(T)/aug-cc-pVTZ harmonic wavenumbers + CCSD(T)/aug-cc-pVDZ anharm. contributions (Raman intensities: B3LYP/aug-cc-pVTZ)

Relative Raman intensities V. Krishnakumar, G. Keresztury, T. Sundius, R. Ramasamy, J. Mol. Struct. 2004, 702, 9–21.

Computeda Experimental (NCSCN) Assignment Ar matrix Kr matrix KBr pellet [5a] KBr pellet [6] 2666 (0.3) 2681.4 (2) - ν3 + ν1 2527 (0.3) 2542.2 (3) 2538.3 (2) ν6 + ν1 2527 (0.4) 2540.9 (2) 2536.2 (3) ν7 + ν5 2487 (0.2) 2502.1 (1) 2498.3 (1) ν9 + ν1 2476 (0.2) 2491.3 (2) 2487.3 (1) ν9 + ν7 2185 (0.3) 2192.9 (2), 2190.2 (2) 2188.9 (3) ν1 CN str. 2171 (0.1) 2181.9 (4), 2178.8 (7) 2177.8 (8) 2184 vs 2180 s ν7 CN str. 967 (0.1) 948.6 (3) ν9 + ν2 651 (2) 680.1 (100) 678.3 (100) 697 m 685 m ν8 CS str. 650 (7) 677.1 (56) 676.3 (52) 670 m ν2 CS str. 487 (1) 465 w ν3 SCN bend. 359 (0.0) ν5 SCN bend. 349 (4) 379 m ν6 SCN bend. 309 (2) ν9 SCN bend. 120 (8) ν4 CSC def. a (CCSD(T)/aug-cc-pVTZ harmonic wavenumbers + CCSD(T)/aug-cc-pVDZ anharmonic contributions (IR intensities: harmonic CCSD(T)/aug-ccpVTZ))

Photolysis of NCSCN in krypton Wavenumber / cm–1 k / min–1 1185.6 0.00066 ± 0.00002 1995.8 2251.7 0.00052 ± 0.00002 2368.0 0.00068 ± 0.00004 2683.1 0.00069 ± 0.00006 2043.1* 0.00145 ± 0.00005 * Fitted only in the 0 – 2040 min region.

Emission spectrum of S2

MI-UV spectrum of NCSCN

NCSeCN Comp.a Observed Assignment Ar Kr KBr pellet [6] KBr pellet [d] 2704 (0.1) 2699.3 (1) - ν2 + ν1 2613 (0.2) 2619.6 (1) 2617.7 (2) ν3 + ν1 2495 (0.4) 2510.2 (0.7) 2499.8 (1) ν7 + ν5 2489 (0.3) 2502.6 (4) 2497.0 (0.8) ν6 + ν1 2455 (0.1) 2464.7 (1) 2462.0 (1) ν9 + ν1 2447 (0.2) 2455.7 (2) 2453.4 (1) ν9 + ν7 2176 (2) 2186.3 (5), 2183.1 (20)b 2182.7 (5), 2181.6 (10)b 2181 s 2183 m ν1 CN str. 2168 (1) 2174.0 (10) 2173.9 (2), 2172.3 (4)b 2175 m ν7 CN str. 581 (5) 573.6 (14) 573.1 (11) 2ν9 547 (6) 527.5 (1), 526.1 (62), 524.4 (37)b 523.0 (18), 524.2 (21), 525.4 (35), 526.7 (26)b 507 vvs 516 vs ν8 CSe str. 528 (6) 522.6 (17), 521.0 (1)b 520.8 (14), 519.3 (1)b ν2 CSe str. 439 (1) 436 w 436 m ν3 SeCN b. 330 (0) 345 w ν5 SeCN b. 316 (3) 336 s ν6 SeCN b. 282 (1) 312 w ν9 SeCN b. 104 (7) c ν4 CSeC def. CCSD(T)/aug-cc-pVTZ harmonic wavenumbers + CCSD(T)/aug-cc-pVDZ anharmonic contributions (IR intensities: harmonic CCSD(T)/aug-cc-pVTZ) Site split bands. Not in the measured spectral region. d) E. E. Aynsley, N. N. Greenwood, J. Sprague; J. Chem. Soc., (1964) 704.

References – [H, C, N, X] [3a] M.E. Jacox, D.E. Milligan, J. Chem. Phys. 40 (1964) 2457. [3b] V.E. Bondybey, J.H. English, C.W. Mathews, R.J. Contolini, J. Mol. Spectrosc. 92 (1982) 431. [3c] J.H. Teles, G. Maier, B.A. Hess, L.J. Schaad, M. Winnewisser, B.P. Winnewisser, Chem. Ber. 122 (1989) 753. [3d] J.N. Crowley, J.R. Sodeau, J. Phys. Chem. 93 (1989) 3100. [3e] M. Pettersson, L. Khriachtchev, S. Jolkkonen, M. Räsänen, J. Phys. Chem. A 103 (1999) 9154. [3f] M. Mladenovic, M. Lewerenz, M.C. McCarthy, P. Thaddeus, J. Chem. Phys. 131 (2009) 174308. [3g] M. Wierzejewska, J. Moc, J. Phys. Chem. A 107 (2003) 11209. [3h] J.R. Durig, D.W. Wertz, J. Chem. Phys. 46 (1967) 3069. [3i] M. Wierzejewska, Z. Mielke, Chem. Phys. Lett. 349 (2001) 227. [3j] T. Pasinszki, M. Krebsz, G. Bazsó, G. Tarczay, Chem. Eur. J. 15 (2009) 6100. [3k] B. M. Landsberg, Chem. Phys. Lett. 60 (1979) 265. [3l] J. Vogt, M. Winnewisser, Ber. Bunsen-Ges. 88 (1984) 439. [3m] J. Vogt, M. Winnewisser, Ber. Bunsen-Ges. 88 (1984) 444. [3m] M. Krebsz, G. Májusi, B. Pacsai, G. Tarczay, T. Pasinszki, Chem.–Eur. J. 18 (2012) 2646. [3n] T. Vörös, G. Bazsó, G. Tarczay, J. Phys. Chem. A 117 (2013) 13616.

References – [2C, 2N, 2X] [4a] T. Pasinszki, Phys. Chem. Chem. Phys. 10 (2008) 1411. [4b] A. Schulz, T.M. Klapötke, Inorg. Chem. 35 (1996) 4791. [4c] G. Maier, M. Naumann, H.P. Reisenauer, J. Eckwert, Angew. Chem. Int. Ed. 35 (1996) 1696. [4d] Ch. Grundmann, Angew. Chem. Int. Ed. 2 (1963) 260. [4e] Ch. Grundmann, V. Mini, J.M. Dean, H.-D. Frommeld, Justus Liebigs Ann. Chem. 687 (1965) 191. [4f] G. Maier, J.H. Teles, Angew. Chem. Int. Ed. 26 (1987) 155. [4g] T. Pasinszki, N.P.C. Westwood, J. Am. Chem. Soc. 117 (1995) 8425. [4h] B. Guo, T. Pasinszki, N.P.C. Westwood, P.F. Bernath, J. Chem. Phys. 103 (1995) 3335. [4i] T. Vörös, G. Bazsó, Gy. Tarczay, T. Pasinszki, J. Mol. Structure, 1025 (2012) 117. [4j] E. Söderbäck, Liebigs. Ann. Chem. 419 (1919) 21. [4k] F. Seel, D. Wesemann, Chem. Ber. 86 (1953) 1107. [4l] F. Seel, D. Wesemann, Chem. Ber. 88 (1955) 1747. [4m] F. Cataldo, J. Inorg. Organomet. Polym. 7 (1997) 35. [4n] A.J. Barnes, S. Suzuki, in: W.F.Murphy (Ed.), Proceedings of the 7th International Conference Raman Spectroscopy, Ottawa, 1980, North-Holland, Amsterdam, 1980, p. 186. [4o] F. Cataldo, Polyhedron 19 (2000) 681. [4p] C. J. Burchell et. al., Inorg. Chem. 45 (2006) 710.

References – [2C, 2N, X] F. Cataldo, Polyhedron 19 (2000) 681. C. J. Burchell, et. al., Inorg. Chem. 45 (2006) 710. Feher, Miklos; Pasinszki, Tibor; Veszpremi, Tamas Inorg. Chem., 34 (1995) 945. W. H. Hocking and M. C. L. Gerry, J. Mol. Spectrosc., 59 (1976) 338. W. H. Hocking and M. C. L. Gerry, J. Chem. Sot. Chem. Commun., (1973) 47. B. Bak, H. Svanholt and A. Holm, Acta Chem. Stand., Ser. A., 33 (1979) 597. D. C. Frost, H. W. Kroto, C. A. McDowell and N. P. C. Westwood, J. Electron. Spectrosc. Relat. Phenom., 11 (1977) 147. Mayer, E, Monatsh. Chem., 101 (1970) 834. DeVore, T.C., J. Mol. Struct., 162 (1987) 287. Pasinszki, T.; Westwood, N.P.C., J. Phys. Chem., 42 (1996) 16586. Guo, B.; Pasinszki, T.; Westwood, N.P.C.; Zhang, K.; Bernath, P.F.,J. Chem. Phys., 105 (1996) 4457. Brupbacher, Th.; Bohn, R.K.; Jager, W.; Gerry, M.C.L.; Pasinszki, T., Westwood, N.P.C., J. Mol. Spectrosc., 181 (1997) 316. Maier, G.; Teles, J. H. Angew. Chem. 99 (1987) 152. Hand, C. W.; Hexter, R. M. J. Am. Chem. Soc. 92 (1970) 1828. Zbigniew Kisiel, Manfred Winnewisser, B. P. Winnewisser, F. C. De Lucia, D. W. Tokaryk, B. E. Billinghurst, J. Phys. Chem. A 117 (2013) 13815

References – [2C, 2N, X] Cataldo, Franco; Keheyan, Yeghis; Polyhedron; 21 (2002) 1825. King, Michael A.; Kroto, Harold W.; J. Am. Chem. Soc. 106 (1984) 7347. Jemson, H. M.; Gerry, M. C. L.; J. Mol. Spectr. 124 (1987) 481. Il'in, A. P.; Eremin, L. P.; Il'ina, T. P.; Russian Journal of Inorganic Chemistry (Translation of Zhurnal Neorganicheskoi Khimii);26 (1981) 913. Klapotke, T. M.; Krumm, B.; Galvesz-Ruiz, J. C.; Noth, H.; Schwab, I. Eur. J. Inorg. Chem. 24 (2004) 4764. King, Michael A.; Kroto, Harold W., J. Chem. Soc., Chem. Comm. 13 (1980) 606. King, M.A.; Kroto, H.W.; Landsberg, B.M., J. Mol. Spectrosc., 113 (1985) 1. M. Krebsz, Gy. Tarczay, T. Pasinszki, Chem. Eur. J. 19 (2013) 17201. Aynsley et al.; J. Chem. Soc. (1964) 704. Linke, K. H.; Lemmer, F. Z. Anorg. Allg. Chem. 345 (1966) 211. M. Krebsz, G. Majusi, B. Pacsai, Gy. Tarczay, T. Pasinszki Chemistry, A European Journal 18 (2012) 2646.