Linear Algebra Review
Why do we need Linear Algebra? We will associate coordinates to 3D points in the scene 2D points in the CCD array 2D points in the image Coordinates will be used to Perform geometrical transformations Associate 3D with 2D points Images are matrices of numbers We will find properties of these numbers 9/22/2018 Octavia I. Camps
Matrices Sum: A and B must have the same dimensions Example: 9/22/2018 Octavia I. Camps
Matrices Product: A and B must have compatible dimensions Examples: 9/22/2018 Octavia I. Camps
Matrices Transpose: If A is symmetric Examples: 9/22/2018 Octavia I. Camps
Matrices Determinant: A must be square Example: 9/22/2018 Octavia I. Camps
Matrices Inverse: A must be square Example: 9/22/2018 Octavia I. Camps
2D Vector P x1 x2 v Magnitude: If , Is a UNIT vector Orientation: 9/22/2018 Octavia I. Camps
Vector Addition v w V+w 9/22/2018 Octavia I. Camps
Vector Subtraction V-w v w 9/22/2018 Octavia I. Camps
Scalar Product v av 9/22/2018 Octavia I. Camps
Inner (dot) Product v w The inner product is a SCALAR! 9/22/2018 Octavia I. Camps
Orthonormal Basis P x1 x2 v i j 9/22/2018 Octavia I. Camps
Vector (cross) Product w v u The cross product is a VECTOR! Magnitude: Orientation: 9/22/2018 Octavia I. Camps
Vector Product Computation w v u 9/22/2018 Octavia I. Camps
2D Geometrical Transformations
2D Translation P’ t P 9/22/2018 Octavia I. Camps
2D Translation Equation P x y tx ty P’ t 9/22/2018 Octavia I. Camps
2D Translation using Matrices P x y tx ty P’ t t P 9/22/2018 Octavia I. Camps
Homogeneous Coordinates Multiply the coordinates by a non-zero scalar and add an extra coordinate equal to that scalar. For example, NOTE: If the scalar is 1, there is no need for the multiplication! 9/22/2018 Octavia I. Camps
Back to Cartesian Coordinates: Divide by the last coordinate and eliminate it. For example, 9/22/2018 Octavia I. Camps
2D Translation using Homogeneous Coordinates P x y tx ty P’ t t P 9/22/2018 Octavia I. Camps
Scaling P’ P 9/22/2018 Octavia I. Camps
Scaling Equation P’ Sy.y P y x Sx.x 9/22/2018 Octavia I. Camps
Scaling & Translating P’’=T.P’ S P’=S.P T P P’’=T.P’=T.(S.P)=(T.S).P 9/22/2018 Octavia I. Camps
Scaling & Translating P’’=T.P’=T.(S.P)=(T.S).P 9/22/2018 Octavia I. Camps
Translating & Scaling Scaling & Translating P’’=S.P’=S.(T.P)=(S.T).P 9/22/2018 Octavia I. Camps
Rotation P P’ 9/22/2018 Octavia I. Camps
Rotation Equations Counter-clockwise rotation by an angle P’ Y’ P x Y’ P’ X’ y 9/22/2018 Octavia I. Camps
Degrees of Freedom R is 2x2 4 elements BUT! There is only 1 degree of freedom: The 4 elements must satisfy the following constraints: 9/22/2018 Octavia I. Camps
Scaling, Translating & Rotating Order matters! P’ = S.P P’’=T.P’=(T.S).P P’’’=R.P”=R.(T.S).P=(R.T.S).P R.T.S R.S.T T.S.R … 9/22/2018 Octavia I. Camps
3D Rotation of Points Rotation around the coordinate axes, counter-clockwise: P x Y’ P’ g X’ y z 9/22/2018 Octavia I. Camps
3D Rotation (axis & angle) 9/22/2018 Octavia I. Camps
3D Translation of Points Translate by a vector t=(tx,ty,tx)T: P’ t Y’ x x’ P z’ y z 9/22/2018 Octavia I. Camps