Chapter 11 Cell Communication

Slides:



Advertisements
Similar presentations
Cell Communication Chapter 11 Local regulators – in the vicinity a.Paracrine signaling – nearby Cells are acted on by signaling Cell (ie. Growth factor)
Advertisements

Chapter 11 Cell Communication.
A signal ___________________ pathway is a series of steps by which a signal on a cell’s surface is _______________into a specific cellular ______________.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 11 Cell Communication.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Cell Communication.  Cell-to-cell communication is important for multicellular organisms.
Cell Communication.
Lecture: Cell Signaling
Cell Communication Chapter 7. Pathway similarities suggest that ancestral signaling molecules evolved in prokaryotes and were modified later in eukaryotes.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Overview: The Cellular Internet Cell-to-cell communication is essential for multicellular organisms Biologists have discovered some universal mechanisms.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Cell Communication.  Cell-to-cell communication is essential for both multicellular and unicellular organisms  Biologists have discovered some universal.
Chapter 11 Cell Communication.
Chapter 11 Cell Communication.
Cell Communication.
Chapter 11 Cell Communication.
Cell Communication Chapter 11
Chapter 11 Cell Communication.
Overview: Cellular Messaging
Chapter 11 Cell Communication.
The plasma membrane plays a key role in most cell signaling
Cell Communication Chapter 11 Lectures prepared by Dr. Jorge L. Alonso
Chapter 11 Cell Communication.
Chapter 11 Cell Communication.
Chapter 11- Cell Communication
Overview of Cellular Signaling Mechanisms
Cell Communication.
Chapter 11 Cell Communication.
Cell signaling and communication
Evolution of Cell Signaling
Aim: How can we describe the structure and function of signal transduction pathways? Do Now: Is cell-to-cell communication important for unicellular organisms?
Figure Adenylyl cyclase Phosphodiesterase Pyrophosphate AMP
Overview: Cellular Messaging
Overview: The Cellular Internet
Chapter 11 Cell Communication.
Cell Communication.
Chapter 11 Cell Communication.
Cell-to-cell communication is essential for multicellular organisms
Chapter 11 Cell Communication.
Intracellular Receptors
Cell Communication.
Chapter 11 Cell Communication.
Chapter 11 Cell Communication.
Cell-to-cell communication is essential for multicellular organisms
Overview: The Cellular Internet
Chapter 11 Cell-to-cell communication is essential for multicellular organisms Biologists have discovered some universal mechanisms of cellular regulation.
Chapter 11 Cell Communication.
Chapter 11 Cell Communication.
Chapter 11 Cell Communication.
Chapter 11 Cell Communication.
Cell Communication Chapter 11. Cell Communication Chapter 11.
Chapter 11 Cell Communication.
Chapter 11 Cell Communication.
Chapter 11 Cell Communication.
Fig Figure 11.1 How do the effects of Viagra (multicolored) result from its inhibition of a signaling-pathway enzyme (purple)?
Chapter 11 Cell Communication.
Chapter 11 Cell Communication.
Chapter 11 Cell Communication.
Cell Communication.
Chapter 11 Cell Communication.
Chapter 11 Cell Communication.
Chapter 11 Cell Communication.
Chapter 11 Cell Communication.
Cell Communication.
Chapter 11 Cell Communication.
Overview: The Cellular Internet
Long-distance signaling
Presentation transcript:

Chapter 11 Cell Communication 11.1 External signals are converted into responses within the cell Chapter 11 Cell Communication

Cell-to-cell communication is essential for multicellular organisms Fig. 11-1 Figure 11.1 How do the effects of Viagra (multicolored) result from its inhibition of a signaling-pathway enzyme (purple)? Figure 11.1 How do the effects of Viagra (multicolored) result from its inhibition of a signaling-pathway enzyme (purple)? Cell-to-cell communication is essential for multicellular organisms

Evolution of Cell Signaling A signal transduction pathway is a series of steps by which a signal on a cell’s surface is converted into a specific cellular response Signal transduction pathways convert signals on a cell’s surface into cellular responses Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Yeast cell, mating type a Yeast cell, mating type  Fig. 11-2  factor Receptor 1 Exchange of mating factors a  a factor Yeast cell, mating type a Yeast cell, mating type  2 Mating a  Figure 11.2 Communication between mating yeast cells New a/ cell a/ 3

Local and Long-Distance Signaling Cells in a multicellular organism communicate by chemical messengers Animal and plant cells have cell junctions that directly connect the cytoplasm of adjacent cells In local signaling, animal cells may communicate by direct contact, or cell-cell recognition Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Gap junctions between animal cells Plasmodesmata between plant cells Fig. 11-4 Plasma membranes Gap junctions between animal cells Plasmodesmata between plant cells (a) Cell junctions Figure 11.4 Communication by direct contact between cells (b) Cell-cell recognition

In many other cases, animal cells communicate using local regulators, messenger molecules that travel only short distances In long-distance signaling, plants and animals use chemicals called hormones Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Figure 11.5 Local and long-distance cell communication in animals Local signaling Long-distance signaling Target cell Electrical signal along nerve cell triggers release of neurotransmitter Endocrine cell Blood vessel Neurotransmitter diffuses across synapse Secreting cell Secretory vesicle Hormone travels in bloodstream to target cells Local regulator diffuses through extracellular fluid Target cell is stimulated Target cell Figure 11.5 Local and long-distance cell communication in animals (a) Paracrine signaling (b) Synaptic signaling (c) Hormonal signaling

The Three Stages of Cell Signaling: A Preview Earl W. Sutherland worked with epinephrine and suggested that cells receiving signals went through three processes: Reception: the target cell’s detection of a signal molecule coming from outside the cell Transduction: the conversion of the signal to a form that can bring about a specific response Response: the specific cellular response to the signal molecule Animation: Overview of Cell Signaling Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Plasma membrane 1 Reception Receptor Signaling molecule 1 Fig. 11-6-1 EXTRACELLULAR FLUID CYTOPLASM Plasma membrane 1 1 Reception Receptor Figure 11.6 Overview of cell signaling Signaling molecule

Plasma membrane 1 Reception Transduction Receptor Signaling molecule 1 Fig. 11-6-2 EXTRACELLULAR FLUID CYTOPLASM Plasma membrane 1 1 Reception 2 Transduction Receptor Relay molecules in a signal transduction pathway Figure 11.6 Overview of cell signaling Signaling molecule

Plasma membrane 1 Reception Transduction Response Receptor Activation Fig. 11-6-3 EXTRACELLULAR FLUID CYTOPLASM Plasma membrane 1 Reception 2 Transduction 3 Response Receptor Activation of cellular response Relay molecules in a signal transduction pathway Figure 11.6 Overview of cell signaling Signaling molecule

Chapter 11 Cell communication Concept 11.2: Reception: A signal molecule binds to a receptor protein, causing it to change shape Chapter 11 Cell communication

Receptors can be found in 2 places: The binding between a signal molecule (ligand) and receptor is highly specific A shape change in a receptor is often the initial transduction of the signal Receptors can be found in 2 places: Intracellular receptors: found inside membrane, the signal has to cross the membrane (hydrophobic) Plasma membrane receptors: bind to water- soluble ligands Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Receptors in the Plasma Membrane There are three main types of membrane receptors: G protein-coupled receptors Receptor tyrosine kinases Ion channel receptors Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

A G protein-coupled receptor is a plasma membrane receptor that works with the help of a G protein The G protein acts as an on/off switch: If GDP is bound to the G protein, the G protein is inactive Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Figure 11.7 Membrane receptors—G protein-coupled receptors, part 2 Fig. 11-7b Plasma membrane G protein-coupled receptor Inactive enzyme Activated receptor Signaling molecule GDP G protein (inactive) Enzyme GDP GTP CYTOPLASM 1 2 Activated enzyme Figure 11.7 Membrane receptors—G protein-coupled receptors, part 2 GTP GDP P i Cellular response 3 4

Receptor tyrosine kinases are membrane receptors that attach phosphates to tyrosines A receptor tyrosine kinase can trigger multiple signal transduction pathways at once (key difference between receptor tyrosine kinases and G-protein coupled receptors) Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fully activated receptor tyrosine kinase Fig. 11-7c Signaling molecule (ligand) Ligand-binding site Signaling molecule  Helix Tyr Tyr Tyrosines Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Receptor tyrosine kinase proteins Dimer CYTOPLASM 1 2 Activated relay proteins Figure 11.7 Membrane receptors—receptor tyrosine kinases Cellular response 1 Tyr Tyr P Tyr Tyr P Tyr Tyr P P Tyr Tyr P Tyr Tyr P Tyr Tyr P P Cellular response 2 Tyr Tyr P Tyr Tyr P Tyr P Tyr P 6 ATP 6 ADP Activated tyrosine kinase regions Fully activated receptor tyrosine kinase Inactive relay proteins 3 4

A ligand-gated ion channel receptor acts as a gate when the receptor changes shape When a signal molecule binds as a ligand to the receptor, the gate allows specific ions, such as Na+ or Ca2+, through a channel in the receptor Regulates the flow of specific ions Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

1 Signaling molecule (ligand) Gate closed Ions Plasma membrane Fig. 11-7d 1 Signaling molecule (ligand) Gate closed Ions Plasma membrane Ligand-gated ion channel receptor 2 Gate open Cellular response Figure 11.7 Membrane receptors—ion channel receptors 3 Gate closed

Intracellular Receptors Some receptor proteins are intracellular, found in the cytosol or nucleus of target cells Small or hydrophobic chemical messengers can readily cross the membrane and activate receptors Examples of hydrophobic messengers are the steroid and thyroid hormones of animals An activated hormone-receptor complex can act as a transcription factor, turning on specific genes Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Hormone (testosterone) Plasma membrane Receptor protein DNA NUCLEUS Fig. 11-8-1 Hormone (testosterone) EXTRACELLULAR FLUID Plasma membrane Receptor protein DNA Figure 11.8 Steroid hormone interacting with an intracellular receptor NUCLEUS CYTOPLASM

Hormone (testosterone) Plasma membrane Receptor protein Hormone- Fig. 11-8-2 Hormone (testosterone) EXTRACELLULAR FLUID Plasma membrane Receptor protein Hormone- receptor complex DNA Figure 11.8 Steroid hormone interacting with an intracellular receptor NUCLEUS CYTOPLASM

Hormone (testosterone) Plasma membrane Receptor protein Hormone- Fig. 11-8-3 Hormone (testosterone) EXTRACELLULAR FLUID Plasma membrane Receptor protein Hormone- receptor complex DNA Figure 11.8 Steroid hormone interacting with an intracellular receptor NUCLEUS CYTOPLASM

Hormone (testosterone) Plasma membrane Receptor protein Hormone- Fig. 11-8-4 Hormone (testosterone) EXTRACELLULAR FLUID Plasma membrane Receptor protein Hormone- receptor complex DNA Figure 11.8 Steroid hormone interacting with an intracellular receptor mRNA NUCLEUS CYTOPLASM

Hormone (testosterone) Plasma membrane Receptor protein Hormone- Fig. 11-8-5 Hormone (testosterone) EXTRACELLULAR FLUID Plasma membrane Receptor protein Hormone- receptor complex DNA Figure 11.8 Steroid hormone interacting with an intracellular receptor mRNA NUCLEUS New protein CYTOPLASM

Chapter 11 Cell Communication Concept 11.3: Transduction: Cascades of molecular interactions relay signals from receptors to target molecules in the cell Chapter 11 Cell Communication

Signal transduction usually involves multiple steps Multistep pathways can amplify a signal: A few molecules can produce a large cellular response Multistep pathways provide more opportunities for coordination and regulation of the cellular response Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Signal Transduction Pathways The molecules that relay a signal from receptor to response are mostly proteins Like falling dominoes, the receptor activates another protein, which activates another, and so on, until the protein producing the response is activated At each step, the signal is transduced into a different form, usually a shape change in a protein Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Protein Phosphorylation and Dephosphorylation In many pathways, the signal is transmitted by a cascade of protein phosphorylations Protein kinases transfer phosphates from ATP to protein, a process called phosphorylation Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Protein phosphatases remove the phosphates from proteins, a process called dephosphorylation This phosphorylation and dephosphorylation system acts as a molecular switch, turning activities on and off Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Phosphorylation cascade Fig. 11-9 Signaling molecule Receptor Activated relay molecule Inactive protein kinase 1 Active protein kinase 1 Inactive protein kinase 2 ATP Phosphorylation cascade ADP Active protein kinase 2 P PP P i Figure 11.9 A phosphorylation cascade Inactive protein kinase 3 ATP ADP Active protein kinase 3 P PP P i Inactive protein ATP ADP P Active protein Cellular response PP P i

Small Molecules and Ions as Second Messengers The extracellular signal molecule that binds to the receptor is a pathway’s “first messenger” Second messengers are small, nonprotein, water-soluble molecules or ions that spread throughout a cell by diffusion Second messengers participate in pathways initiated by G protein-coupled receptors and receptor tyrosine kinases Cyclic AMP and calcium ions are common second messengers Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Cyclic AMP (cAMP) is one of the most widely used second messengers Fig. 11-10 Cyclic AMP (cAMP) is one of the most widely used second messengers Adenylyl cyclase, an enzyme in the plasma membrane, converts ATP to cAMP in response to an extracellular signal Adenylyl cyclase Phosphodiesterase Pyrophosphate P P i ATP cAMP AMP Figure 11.10 Cyclic AMP

Figure 11.11 cAMP as second messenger in a G-protein-signaling pathway First messenger Adenylyl cyclase G protein G protein-coupled receptor GTP ATP Second messenger cAMP Figure 11.11 cAMP as second messenger in a G-protein-signaling pathway Protein kinase A Figure 11.11 cAMP as second messenger in a G-protein-signaling pathway Cellular responses

Calcium Ions and Inositol Triphosphate (IP3) Calcium ions (Ca2+) act as a second messenger in many pathways Calcium is an important second messenger because cells can regulate its concentration Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

A signal relayed by a signal transduction pathway may trigger an increase in calcium in the cytosol Pathways leading to the release of calcium involve inositol triphosphate (IP3) and diacylglycerol (DAG) as additional second messengers Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

EXTRA- CELLULAR FLUID Signaling molecule (first messenger) G protein Fig. 11-13-1 EXTRA- CELLULAR FLUID Signaling molecule (first messenger) G protein DAG GTP G protein-coupled receptor PIP2 Phospholipase C IP3 (second messenger) IP3-gated calcium channel Figure 11.13 Calcium and IP3 in signaling pathways Endoplasmic reticulum (ER) Ca2+ CYTOSOL

EXTRA- CELLULAR FLUID Signaling molecule (first messenger) G protein Fig. 11-13-2 EXTRA- CELLULAR FLUID Signaling molecule (first messenger) G protein DAG GTP G protein-coupled receptor PIP2 Phospholipase C IP3 (second messenger) IP3-gated calcium channel Figure 11.13 Calcium and IP3 in signaling pathways Endoplasmic reticulum (ER) Ca2+ Ca2+ (second messenger) CYTOSOL

EXTRA- CELLULAR FLUID Signaling molecule (first messenger) G protein Fig. 11-13-3 EXTRA- CELLULAR FLUID Signaling molecule (first messenger) G protein DAG GTP G protein-coupled receptor PIP2 Phospholipase C IP3 (second messenger) IP3-gated calcium channel Figure 11.13 Calcium and IP3 in signaling pathways Endoplasmic reticulum (ER) Various proteins activated Cellular responses Ca2+ Ca2+ (second messenger) CYTOSOL

Chapter 11 Cell Communication Concept 11.4: Response: Cell signaling leads to regulation of transcription or cytoplasmic activities Chapter 11 Cell Communication

Nuclear and Cytoplasmic Responses Ultimately, a signal transduction pathway leads to regulation of one or more cellular activities The response may occur in the cytoplasm or may involve action in the nucleus Many signaling pathways regulate the synthesis of enzymes or other proteins, usually by turning genes on or off in the nucleus The final activated molecule may function as a transcription factor Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Growth factor Reception Receptor Phosphorylation cascade Transduction Fig. 11-14 Growth factor Reception Receptor Phosphorylation cascade Transduction CYTOPLASM Inactive transcription factor Active transcription factor Figure 11.14 Nuclear responses to a signal: the activation of a specific gene by a growth factor Response P DNA Gene NUCLEUS mRNA

Other pathways regulate the activity of enzymes Fig. 11-15 Reception Binding of epinephrine to G protein-coupled receptor (1 molecule) Transduction Other pathways regulate the activity of enzymes Inactive G protein Figure 11.15 Cytoplasmic response to a signal: the stimulation of glycogen breakdown by epinephrine Active G protein (102 molecules) Inactive adenylyl cyclase Active adenylyl cyclase (102) ATP Cyclic AMP (104) Inactive protein kinase A Active protein kinase A (104) Figure 11.15 Cytoplasmic response to a signal: the stimulation of glycogen breakdown by epinephrine Inactive phosphorylase kinase Active phosphorylase kinase (105) Inactive glycogen phosphorylase Active glycogen phosphorylase (106) Response Glycogen Glucose-1-phosphate (108 molecules)

RESULTS CONCLUSION Fig. 11-16 Signaling pathways can also affect the physical characteristics of a cell, for example, cell shape Wild-type (shmoos) ∆Fus3 ∆formin CONCLUSION Mating factor 1 Shmoo projection forming G protein-coupled receptor Formin P Fus3 Actin subunit Figure 11.16 How do signals induce directional cell growth in yeast? GTP P GDP 2 Phosphory- lation cascade Formin Formin P 4 Microfilament Fus3 Fus3 P 5 3

Fine-Tuning of the Response Multistep pathways have two important benefits: Amplifying the signal (and thus the response) At each step, the number of activated products is much greater than in the preceding step Contributing to the specificity of the response Different kinds of cells have different collections of proteins and these allow cells to detect and respond to different signals The same signal can have different effects in cells with different proteins and pathways Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 11-17 Figure 11.17 The specificity of cell signaling Signaling molecule Receptor Relay molecules Response 1 Response 2 Response 3 Cell A. Pathway leads to a single response. Cell B. Pathway branches, leading to two responses. Figure 11.17 The specificity of cell signaling Activation or inhibition Response 4 Response 5 Cell C. Cross-talk occurs between two pathways. Cell D. Different receptor leads to a different response.

Signaling Plasma molecule membrane Receptor Three different protein Fig. 11-18 Signaling molecule Plasma membrane Receptor Three different protein kinases Figure 11.18 A scaffolding protein Scaffolding protein Scaffolding proteins are large relay proteins to which other relay proteins are attached Scaffolding proteins can increase the signal transduction efficiency by grouping together different proteins involved in the same pathway

Chapter 11 Cell Communication Concept 11.5: Apoptosis (programmed cell death) integrates multiple cell- signaling pathways Chapter 11 Cell Communication

Apoptosis is programmed or controlled cell suicide A cell is chopped and packaged into vesicles that are digested by scavenger cells Apoptosis prevents enzymes from leaking out of a dying cell and damaging neighboring cells Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 11-19 Figure 11.19 Apoptosis of human white blood cells 2 µm

Apoptotic Pathways and the Signals That Trigger Them Caspases are the main proteases (enzymes that cut up proteins) that carry out apoptosis Apoptosis can be triggered by: An extracellular death-signaling ligand DNA damage in the nucleus Protein misfolding in the endoplasmic reticulum Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Apoptosis evolved early in animal evolution and is essential for the development and maintenance of all animals Apoptosis may be involved in some diseases (for example, Parkinson’s and Alzheimer’s); interference with apoptosis may contribute to some cancers Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Figure 11.21 Effect of apoptosis during paw development in the mouse Interdigital tissue 1 mm Figure 11.21 Effect of apoptosis during paw development in the mouse

Reception Transduction Response Receptor Activation of cellular Fig. 11-UN1 1 Reception 2 Transduction 3 Response Receptor Activation of cellular response Relay molecules Signaling molecule