Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider

Slides:



Advertisements
Similar presentations
$100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200.
Advertisements

$100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300.
$100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500.
Background images courtesy of abc.com 1,000, , , ,000 64,000 32,000 16,000 8,000 4,000 2,000 1,
Chiral Tunneling and the Klein Paradox in Graphene M. I. Katsnelson, K
Weir PW Analysis of wafer-chuck influence on features Dataset:80_D2_1_2 Features: Device: x5 1:1 / Level: ASML AMD T nm LotName No:80D2_1_2.
$100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300.
PHYSIQUE MESOSCOPIQUE
CMS ECAL Annual Review - CERN Sept 2001 R M Brown - RAL 1 Test results from 500 preproduction VPTs R M Brown RAL - UK CERN 19 September 2001.
LaB6 Scanning Electron Source
Susan B. Sinnott, 1 Simon R. Phillpot, 1 Scott Perry, 1 and W. Gregory Sawyer 1,2 University of Florida, 1 Materials Science and Engineering 2 Mechanical.
Leakage in MOS devices Mohammad Sharifkhani.
Modulation of conductive property in VO 2 nano-wires through an air gap-mediated electric field Tsubasa Sasaki (Tanaka-lab) 2013/10/30.
Category Category 2Category 3Category 4Category
$100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300.
Niels Bohr Institute – University of Copenhagen
Electronic transport properties of nano-scale Si films: an ab initio study Jesse Maassen, Youqi Ke, Ferdows Zahid and Hong Guo Department of Physics, McGill.
Quasiparticle Scattering in 2-D Helical Liquid arXiv: X. Zhou, C. Fang, W.-F. Tsai, J. P. Hu.
Waveguide group velocity determination by spectral interference measurements in NSOM Bill Brocklesby Optoelectronics Research Centre University of Southampton,
Influence of gate capacitance on CNTFET performance using Monte Carlo simulation H. Cazin d'Honincthun, S. Retailleau, A. Bournel, P. Dollfus, J.P. Bourgoin*
S A N T A C L A R A U N I V E R S I T Y Center for Nanostructures September 25, 2003 Surface Phenomena at Metal-Carbon Nanotube Interfaces Quoc Ngo Dusan.
Guide to STM Amplifier Sensitivity. The pre-amp converts the tunnelling current to a voltage that is used by the feedback circuit. Pre-amp sensitivity.
Study of Behaviour of Silicon Sensor Structures, Before and After Irradiation Y. Unno, S. Mitusi, Y. Ikegami, S. Terada (KEK) O. Jinnouchi, R. Nagai (Tokyo.
Nanostructures on ultra-clean two-dimensional electron gases T. Ihn, C. Rössler, S. Baer, K. Ensslin C. Reichl and W. Wegscheider.
Spintronics with topological insulator Takehito Yokoyama, Yukio Tanaka *, and Naoto Nagaosa Department of Applied Physics, University of Tokyo, Japan *
Electrical Techniques MSN506 notes. Electrical characterization Electronic properties of materials are closely related to the structure of the material.
Andreev Reflection in Quantum Hall Effect Regime H. Takayanagi 髙柳 英明 Tokyo University of Science,Tokyo International Center for Materials NanoArchitechtonics.
ECE 4339: Physical Principles of Solid State Devices
Markus Büttiker University of Geneva The Capri Spring School on Transport in Nanostructures April 3-7, 2006 Scattering Theory of Conductance and Shot Noise.
Thermal Enhancement of Interference Effects in Quantum Point Contacts Adel Abbout, Gabriel Lemarié and Jean-Louis Pichard Phys. Rev. Lett. 106,
S. Nanot 1, B. Lassagne 1, B. Raquet 1, J.M. Broto 1 and W. Escoffier 1 J.P. Cleuziou 2, M. Monthioux 2, T. Ondarçuhu 2 R. Avrilier 3, S. Roche 3 Abstract.
Optics on Graphene. Gate-Variable Optical Transitions in Graphene Feng Wang, Yuanbo Zhang, Chuanshan Tian, Caglar Girit, Alex Zettl, Michael Crommie,
Single-shot read-out of an individual electron spin in a quantum dot J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, B. Witkamp, L. M. K. Vandersypen,
Axel Freyn, Ioannis Kleftogiannis and Jean-Louis Pichard
Full-band Simulations of Band-to-Band Tunneling Diodes Woo-Suhl Cho, Mathieu Luisier and Gerhard Klimeck Purdue University Investigate the performance.
© 2010 Eric Pop, UIUCECE 598EP: Hot Chips Conductance Quantization One-dimensional ballistic/coherent transport Landauer theory The role of contacts Quantum.
Lesson 5, Part 2: Electric field induced transport in nanostructures.
The noise spectra of mesoscopic structures Eitan Rothstein With Amnon Aharony and Ora Entin University of Latvia, Riga, Latvia.
Quantum conductance I.A. Shelykh St. Petersburg State Polytechnical University, St. Petersburg, Russia International Center for Condensed Matter Physics,
A. Sinchenko, National Research Nuclear University MEPhI, Moscow
STM / AFM Images Explanations from
Observation of neutral modes in the fractional quantum hall effect regime Aveek Bid Nature (2010) Department of Physics, Indian Institute of Science,
Slide # 1 SPM Probe tips CNT attached to a Si probe tip.
Radiation induced photocurrent and quantum interference in n-p junctions. M.V. Fistul, S.V. Syzranov, A.M. Kadigrobov, K.B. Efetov.
Complex Epitaxial Oxides: Synthesis and Scanning Probe Microscopy Goutam Sheet, 1 Udai Raj Singh, 2 Anjan K. Gupta, 2 Ho Won Jang, 3 Chang-Beom Eom 3 and.
AFM. The cantilever holder The cantilever dimensions Tip position.
T. K. T. Nguyen, M. N. Kiselev, and V. E. Kravtsov The Abdus Salam ICTP, Trieste, Italy Effect of magnetic field on thermoelectric coefficients of a single.
Electronic States and Transport in Quantum dot Ryosuke Yoshii YITP Hayakawa Laboratory.
L4 ECE-ENGR 4243/ FJain 1 Derivation of current-voltage relation in 1-D wires/nanotubes (pp A) Ballistic, quasi-ballistic transport—elastic.
NANO 225 Micro/NanoFabrication Electron Microscopes 1.
Slide # Goutam Koley Electronic characterization of dislocations MorphologyPotential 0.1 V /Div 10 nm /Div Surf. Potential G. Koley and M. G. Spencer,
LaBella Group cnse.albany.edu Towards an Atomic Scale Understanding of Spin Polarized Electron Transport Towards.
J.Vaitkus IWORID6, Glasgow,
Progress Report: Tools for Quantum Information Processing in Microelectronics ARO MURI (Rochester-Stanford-Harvard-Rutgers) Third Year Review, Harvard.
2D Topological insulator in HgTe quantum wells Z.D. Kvon Institute of Semiconductor Physics, Novosibirsk, Russia 1. Introduction. HgTe quantum wells. 2.
Charge pumping in mesoscopic systems coupled to a superconducting lead
二维电磁模型 基本方程与无量纲化 基本方程. 无量纲化 方程化为 二维时的方程 时间上利用蛙跳格式 网格划分.
Resonant Zener tunnelling via zero-dimensional states in a narrow gap InAsN diode Davide Maria Di Paola School of Physics and Astronomy The University.
Laboratory equipment Lecture (3).
STM Conference Talk: Dirk Sander
Spin-orbit interaction in a dual gated InAs/GaSb quantum well
J. Appl. Phys. 112, (2012); Scanning Tunneling Microscopy/Spectroscopy Studies of Resistive Switching in Nb-doped.
Introduction to Nanoheat; Aspel group
Probing Anderson localization of light via weak non-linear effects
Types of Microscopy Type Probe Technique Best Resolution Penetration
Michael Fuhrer Director, FLEET Monash University
Evidence for a fractional fractal quantum Hall effect in graphene superlattices by Lei Wang, Yuanda Gao, Bo Wen, Zheng Han, Takashi Taniguchi, Kenji Watanabe,
Ballistic miniband conduction in a graphene superlattice
Structural analysis of graphene-embedded FeN4 (FeN4/GN) catalysts
Fig. 2 Gate and magnetic field dependence of the edge conduction.
Presentation transcript:

Imaging transmission of nanostructures in a high-mobility heterostructure Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider Aleksey Kozikov Local electron transport Classical/quantum phenomena Diffusive/ballistic transport

How does small-angle scattering affect transport? Motivation Ultra high-mobility: lp >> L  Ballistic transport: electron trajectories are straight lines Modulation doping technique  Small-angle scattering: electron trajectories are wavy lines How does small-angle scattering affect transport?

Motivation 2DEG Conductance, G QPC y x M. Topinka et al. Nature 410, 183-186 (2001)

Motivation Scannell et al. PRB 85, 195319 (2012) K 115 K 0.24 K Local relocation of charge between donor sites

Motivation Conductance through a tunneling diode Wilkinson et al. Nature 380, 608 (1996)

Motivation Experimental data Filtered data Crook et al. PRL 91, 246803 (2003)

Motivation Experimental data Theory Filtered data Aoki et al. PRL 108, 136804 (2012) No one-to-one correspondence

Sample Golden top gates 2DEG Ballistic QPC stadium n = 1.2 × 1015 m-2 EF = 4 meV λF = 72 nm µ = 850 m2/Vs lp = 49 µm DStadium = 3 µm 1 µm 2DEG Ballistic stadium QPC Excellent wafers: C. Reichl W. Wegscheider ETH Zurich

Quantum point contact Top gates Electron flow 2DEG D. A. Wharam et al., 1988 B. J. van Wees et al., 1988 2DEG

Landauer-Büttiker theory SGM technique Energy Tip Top gates d D. A. Wharam et al., 1988 B. J. van Wees et al., 1988 Backscattering effect Landauer-Büttiker theory of transport 2DEG

Electron backscattering through the QPC Differential conductance, dG/dx x y 3rd plateau Vtip= -6.0 V d = 70 nm 1 µm arXiv:1206.1371 11

Scanning gate microscopy on a QPC y (µm) Gate voltage dependence Tip voltage dependence Tip-surface distance dependence Temperature dependence Source-drain bias dependence QPC asymmetry dependence Magnetic field dependence: backscattering is essential Strongly varying interference fringe spacing (50%) X (µm) Small-angle scattering arXiv:1206.1371

Scanning gate microscopy on a stadium dG/dx 1 µm y (µm) Vtip= -8.0 V Vstadium= -0.5 V X (µm) 13

Scanning gate microscopy on a stadium dG/dx 1 µm y (µm) Vtip= -8.0 V Vstadium= -0.8 V X (µm) 14

Scanning gate microscopy on a stadium dG/dx 1 µm y (µm) Vtip= -8.0 V Vstadium= -2.0 V X (µm) 15

Scanning gate microscopy on a stadium dG/dx G (2e2/h) 1 µm 1 µm Vtip= -8.0 V Vstadium= -0.8 V 16

Scanning gate microscopy on a stadium dG/dx 500 nm

Scanning gate microscopy on a stadium dG/dx G (2e2/h) dG/dx

Qualitative model d a c b

Qualitative model d a c Rcr b 𝑅 𝑇𝑜𝑡𝑎𝑙 = 𝑅 𝑎 || 𝑅 𝑏 + 𝑅 𝑐 + 𝑅 𝑑 + 𝑅 𝑐𝑟 𝑅 𝑇𝑜𝑡𝑎𝑙 = 𝑅 𝑎 || 𝑅 𝑏 + 𝑅 𝑐 + 𝑅 𝑑 + 𝑅 𝑐𝑟 𝑅 𝑇𝑜𝑡𝑎𝑙 = 𝑒 2 ℎ 𝑎+ 𝑒 2 ℎ 𝑏 −1 + 𝑒 2 ℎ 𝑐 −1 + d a + 𝑒 2 ℎ 𝑑 −1 + 𝑅 𝑐𝑟 c Rcr contact resistance 𝐺 𝑇𝑜𝑡𝑎𝑙 =1/ 𝑅 𝑇𝑜𝑡𝑎𝑙 b

Qualitative model G (2e2/h) Assumptions: Rcr= 0, d = ∞ c = 25, W = 0.9 µm, RTip=0.5 µm 𝐺 𝑇𝑜𝑡𝑎𝑙 = 2 𝑒 2 ℎ (𝑎+𝑏)𝑐 𝑎+𝑏+𝑐

Model vs. experiment Model G (2e2/h) Experiment G (2e2/h) µ Dashed lines are guides to the eye

Model vs. experiment 1D profiles along red lines shown in the previous slide

Magnetic field dependence dG/dx 1 µm y (µm) Vtip= -8.0 V Vcgate= -1.0 V B = 0 mT X (µm) 24

Magnetic field dependence dG/dx 1 µm y (µm) Vtip= -8.0 V Vcgate= -1.0 V B = 50 mT X (µm) 25

Magnetic field dependence dG/dx 1 µm y (µm) Vtip= -8.0 V Vcgate= -1.0 V B = 100 mT X (µm) 26

Magnetic field dependence dG/dx 1 µm y (µm) Vtip= -8.0 V Vcgate= -1.0 V B = 200 mT X (µm) 27

Magnetic field dependence dG/dx 1 µm y (µm) Vtip= -8.0 V Vcgate= -1.0 V B = 300 mT X (µm) 28

Magnetic field dependence dG/dx 1 µm y (µm) Vtip= -8.0 V Vcgate= -1.0 V B = 500 mT X (µm) 29

Magnetic field dependence dG/dx 1 µm y (µm) Vtip= -8.0 V Vcgate= -1.0 V B = 0 mT X (µm) 30

Magnetic field dependence dG/dx dG/dx Dr. Dietmar Weinmann, Strasbourg, France QPCSGM116 5th cooldown 31

Summary (experimental observations) QPC: Backscattering effect Interference effect 1 µm 1 µm 500 nm Ballistic stadium: Two fringe patterns Conductance fluctuations

Summary (experimental features not covered by the model) Center of the stadium Positions of the lens-shaped regions Magnetic field dependence

THANK YOU

Numerical simulations (top panel) vs. experiment (bottom panel) RTip=0.05 µm RTip=0.5 µm RTip=1 µm Vtip = - 4 V Vtip = - 6 V Vtip = - 8 V G ≈ 17× 2e2/h without the tip

Features not explained by simulations A region of reduced conductance in the center of the stadium at low tip biases (experiment) Positions of the lens-shaped regions: inside the stadium in the experiment in the centers of the constrictions in the simulations

Numerical simulations (B = 0 mT): same as in the previous slide, but the color scales are different RTip=0.05 µm RTip=0.5 µm RTip=1 µm

SGM technique Gating effect Tip Top gates Tip-induced potential μS μD Energy D. A. Wharam et al., 1988 B. J. van Wees et al., 1988 2DEG Gating effect

Influence of the tip on the conductance

Scanning inside the stadium Vtip=-8.0 V Vcgate=-1.0 V VQPC=0 V 40

Scanning inside the stadium Vtip=-8.0 V Vcgate=-1.0 V VQPC=-0.38 V B=0 mT 41

Profiles Vtip=-8.0 V Vcgate=-1.0 V B=0 mT Left QPC is biased, 3 modes. This is the case only in this slide. A B 42

Profiles I (nA) A B Vtip=-8.0 V Vcgate=-1.0 V B=300 mT A B 43

Profiles I (nA) A B Vtip=-8.0 V Vcgate=-1.0 V B=500 mT A B 44

Magnetoresistance measurements 45

Magnetoresistance measurements Stadium voltage B (mT) rc (um) 120 0.48 100 0.58 80 0.72 60 0.96 40 1.44 10 5.75 46

Magnetic focusing 80 mT 100 mT 50 mT B (mT) rc (um) 120 0.48 100 0.58 0.72 60 0.96 40 1.44 10 5.75 50 mT

Summary (experimental observations) Scanning gate microscopy on a quantum point contact: Imaging electron backscattering Observation of branches and interference fringes Detailed investigation of the branching behaviour Strongly varying interference fringe spacing Scanning gate microscopy on a ballistic stadium: Two fringe pattern close to the constrictions Measurements at high magnetic fields Proposed model explains some of the observed features, but not all of them