Placing Figures in the Coordinate Plane GEOMETRY LESSON 6-6 Pages 328-330 Exercises 1. W(0, h); Z(b, 0) 2. W(a, a); Z(a, 0) 3. W(–b, b); Z(–b, –b) 4. W(0, b); Z(a, 0) 5. W(–r, 0); Z(0, –t) 6. W(–b, c); Z(0, c) 7. , ; – 8. a, ; undefined 9. (–b, 0); undefined 10. , ; – 11. – – ; – 12. – , c ; 0 13. a. (2a, 0) b. (0, 2b) c. (a, b) d. b2 + a2 13. (continued) e. b2 + a2 f. b2 + a2 g. MA = MB = MC 14–19. Answers may vary. Samples are given. 14. A, C, H, F 15. B, D, H, F 16. A, B, F, E a 2 b 2 b a r 2 t 2 t r b 2 b 2 h 2 h b a 2 6-6
Placing Figures in the Coordinate Plane GEOMETRY LESSON 6-6 17. A, C, G, E 18. A, C, F, E 19. A, D, G, F 20. W(0, 2h); Z(2b, 0) 21. W(2a, 2a); Z(2a, 0) 22. W(–2b, 2b); Z(–2b, –2b) 23. W(0, b); Z(2a, 0) 24. Z(0, –2t); W(–2r, 0) 25. W(–2b, 2c); Z(0, 2c) 26. a. Diag. of a rhombus are . b. Diag. of a that is not a rhombus are not . 27. Answers may vary. Sample: r = 3, t = 2; slopes are and – ; all lengths are 13; the opp. sides have the same slope, so they are . The 4 27. (continued) sides are . 28. (c – a, b) 29. (a, 0) 30. (–b, 0) 31. a. b. (–b, 0), (0, b), (b, 0), (0, –b) 2 3 6-6
Placing Figures in the Coordinate Plane GEOMETRY LESSON 6-6 31. (continued) c. b 2 d. 1, –1 e. Yes, because the product of the slopes is –1. 32. a. 32. (continued) b. c. b2 + 4c2 d. b2 + 4c2 e. the lengths are =. 33. 34. Step 1: (0, 0) Step 2: (a, 0) Step 3: Since m 1 + m 2 + 90 = 180, 1 and 2 must be compl. 3 and 2 are the acute of a rt. . Step 4: (–b, 0) Step 5: (–b, a) Step 6: Using the formula for slope, the s 6-6
Placing Figures in the Coordinate Plane GEOMETRY LESSON 6-6 34. (continued) slope for 1 = and the slope for 2 = – . Mult. the slopes, • – = –1. 35. B 36. F 37. C 38. C 39. A 40. C 41. [2] (b, a); the diag. of a rectangle bisect each other. [1] no conclusion given 42. 62, 118, 118; 2.5 43. (3, 2) 44. (–3, –4) 45. a. Reflexive b. AAS b a a b b a a b 6-6