Deterministic entanglement of trapped atomic ions II

Slides:



Advertisements
Similar presentations
Gregynog QIP meeting QIP Experiments with ions, atoms and molecules Christopher Foot, University of Oxford
Advertisements

Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.
The Extraction of Higher Order Field Correlations from a First Order Interferometer Scott Shepard Louisiana Tech University.
Quantum limits in optical interferometry R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1, M. Guta 2, K. Macieszczak 1,2, R. Schnabel.
Trapped Ions and the Cluster State Paradigm of Quantum Computing Universität Ulm, 21 November 2005 Daniel F. V. JAMES Department of Physics, University.
Memory must be able to store independently prepared states of light The state of light must be mapped onto the memory with the fidelity higher than the.
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
Displaced-photon counting for coherent optical communication Shuro Izumi.
Pre-requisites for quantum computation Collection of two-state quantum systems (qubits) Operations which manipulate isolated qubits or pairs of qubits.
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Quantum Information Processing with Trapped Ions E. Knill C. Langer D. Leibfried R. Reichle S. Seidelin T. Schaetz D. J. Wineland NIST-Boulder Ion QC group.

Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 5.
Single-ion Quantum Lock-in Amplifier
Light-Matter Quantum Interface
Ideas for Experimental Realization of Neutral Atom Quantum Computing 演 講 者:蔡 錦 俊 成功大學物理系
Spin-motion coupling in atoms Cooling to motional ground states and Quantum logic spectroscopy.
Interfacing quantum optical and solid state qubits Cambridge, Sept 2004 Lin Tian Universität Innsbruck Motivation: ion trap quantum computing; future roads.
TeV Particle Astrophysics August 2006 Caltech Australian National University Universitat Hannover/AEI LIGO Scientific Collaboration MIT Corbitt, Goda,
Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler.
R. Demkowicz-Dobrzański 1, J. Kołodyński 1, M. Guta 2 1 Faculty of Physics, Warsaw University, Poland 2 School of Mathematical Sciences, University of.
Dynamical decoupling in solids
Generation of Mesoscopic Superpositions of Two Squeezed States of Motion for A Trapped Ion Shih-Chuan Gou ( 郭西川 ) Department of Physics National Changhua.
Quantum computing with Rydberg atoms Klaus Mølmer Coherence school Pisa, September 2012.
Determination of fundamental constants using laser cooled molecular ions.
Kenneth Brown, Georgia Institute of Technology. Cold Molecular Ions 15  m Ca + X + ?
Christine Muschik and J. Ignacio Cirac Entanglement generated by Dissipation Max-Planck-Institut für Quantenoptik Hanna Krauter, Kasper Jensen, Jonas Meyer.
Distributing entanglement in a multi-zone ion-trap * Division 891 T. Schätz D. Leibfried J. Chiaverini M. D. Barrett B. Blakestad J. Britton W. Itano J.
R. Demkowicz-Dobrzański 1, J. Kołodyński 1, K. Banaszek 1, M. Jarzyna 1, M. Guta 2 1 Faculty of Physics, Warsaw University, Poland 2 School of Mathematical.
School of something FACULTY OF OTHER School of Physics and Astronomy FACULTY OF MATHEMATICAL AND PHYSICAL SCIENCES Putting entanglement to work: Super-dense.
LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS A. Sinatra, G. Reinaudi, F. Laloë (ENS, Paris) Laboratoire Kastler Brossel A. Dantan, E. Giacobino, M. Pinard.
Copenhagen interpretation Entanglement - qubits 2 quantum coins 2 spins ( spin “up” or spin “down”) Entangled state many qubits: Entangled state:
Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)
Using entanglement against noise in quantum metrology
Comparison of Laser Interferometry and Atom Interferometry for Gravitational Wave Observations in Space Peter L. Bender JILA, University of Colorado Boulder.
Фото MANIPULATING THE QUANTUM STATE OF SINGLE ATOMS AND PHOTONS works of Nobel Laureates in physics 2012 A.V.Masalov Lebedev Physics Institute, RAS, Moscow.
Imperial College London Robust Cooling of trapped particles J. Cerrillo-Moreno, A. Retzker and M.B. Plenio (Imperial College) Olomouc Feynman Festival.
Suggestion for Optical Implementation of Hadamard Gate Amir Feizpour Physics Department Sharif University of Technology.
Purdue University Spring 2016 Prof. Yong P. Chen Lecture 18 (3/24/2016) Slide Introduction to Quantum Photonics.
Metrology and integrated optics Geoff Pryde Griffith University.
MICRA: status report Exploration of atom-surface forces on a micrometric scale via high sensitivity force measurements with ultracold quantum gases. Objectives:
Jiří Minář Centre for Quantum Technologies
Atomic Clocks Niles Bohr Institute PhD Student: Johannes Borregaard
Role of entanglement in extracting information on quantum processes
TC, U. Dorner, P. Zoller C. Williams, P. Julienne
A10 Designing spin-spin interactions in cold ion crystals
Sub-Planck Structure and Weak Measurement
Detuned Twin-Signal-Recycling
Measurement Science Science et étalons
Quantum Computing from theory to experiments
Nergis Mavalvala Aspen January 2005
Preparing antihydrogen at rest for the free fall in
the illusion of the Heisenberg scaling
Generation of squeezed states using radiation pressure effects
Outline Device & setup Initialization and read out
Ion Trap Quantum Computing and Teleportation
Quantum effects in Gravitational-wave Interferometers
Whither Quantum Computing? (avec les pièges à ions)
Optical qubits
Advanced LIGO Quantum noise everywhere
Quantum Information with Continuous Variables
The Grand Unified Theory of Quantum Metrology
Quantum State and Process Measurement and Characterization
Atomic BEC in microtraps: Squeezing & visibility in interferometry
Squeezed Light Techniques for Gravitational Wave Detection
Humboldt Kolleg, Vilnius
Advanced Optical Sensing
Quantum phase magnification
by Justin G. Bohnet, Brian C. Sawyer, Joseph W. Britton, Michael L
Presentation transcript:

Deterministic entanglement of trapped atomic ions II NIST, Boulder, Ion Storage group: Other ion groups pursuing entanglement: Aarhus Garching (MPQ) Hamburg Innsbruck LANL London (Imperial) McMaster (Ontario) Michigan Oxford Teddington (NPL) M. Barrett (postdoc, Georgia Tech.) † J. C. Bergquist (NIST) B. Blakestad (student, CU) J. J. Bollinger (NIST) J. Britton (student, U. Colorado) J. Chiaverini (postdoc, Stanford) B. DeMarco (postdoc, U. Colorado) ‡ W. Itano (NIST) B. Jelenković (guest, Blegrade) ¶ M. Jensen (U. Colorado) J. Jost (student, U. Colorado) E. Knill (NIST, computation Div.) C. Langer (student, U. Colorado) D. Leibfried (NIST) W. Oskay (postdoc, U. Texas) R. Ozeri (postdoc, Weizmann) T. Rosenband (U. Colorado) T. Schätz (postdoc, MPQ) P. Schmidt (postdoc, Stuttgart) D. J. Wineland (NIST) † Present address: Otago University, NZ ‡ Present address: U. Illinois ¶ Present address: J.P.L.

Deterministic entanglement of trapped atomic ions II NIST, Boulder, Ion Storage group: Other ion groups pursuing entanglement: Aarhus Garching (MPQ) Hamburg Innsbruck LANL London (Imperial) McMaster (Ontario) Michigan Oxford Teddington (NPL) M. Barrett (postdoc, Georgia Tech.) † J. C. Bergquist (NIST) B. Blakestad (student, CU) J. J. Bollinger (NIST) J. Britton (student, U. Colorado) J. Chiaverini (postdoc, Stanford) B. DeMarco (postdoc, U. Colorado) ‡ W. Itano (NIST) B. Jelenković (guest, Blegrade) ¶ M. Jensen (U. Colorado) entanglement-enhanced metrology: uncertainty relations improved interferometry e.g., Ramsey method of spectroscopy quantum information mapping improved detection efficiency J. Jost (student, U. Colorado) E. Knill (NIST, computation Div.) C. Langer (student, U. Colorado) D. Leibfried (NIST) W. Oskay (postdoc, U. Texas) R. Ozeri (postdoc, Weizmann) T. Rosenband (U. Colorado) T. Schätz (postdoc, MPQ) P. Schmidt (postdoc, Stuttgart) D. J. Wineland (NIST) † Present address: Otago University, NZ ‡ Present address: U. Illinois ¶ Present address: J.P.L.

Uncertainty Relations: Uncertainty relation for operators: For operators Õ1, Õ2, Schwartz inequality    Õ1Õ2  ½|[Õ1,Õ2]| (1) e.g. for Õ1 = x, Õ2 = p  position/momentum uncertainty relation Uncertainty relations for parameters and operators: For operator Õ() (  parameter) Õ  |dÕ/d|  (2a)    Õ/|dÕ/d| (2b) Example: In (1), let Õ1 = Õ, Õ2 = H (Hamiltonian)  ÕH  ½|[Õ,H]| But,  dÕ/dt = i[H,Õ] +  Õ/t  ÕH  ½ | dÕ/dt| (for Õ/t = 0) From (2a), Õ = |dÕ/dt| t,  H t  ½ (time/energy uncertainty relation)

Quantum limits to (spin) rotation angle measurement J = i Si (spin ½ particles, equivalent to ensemble of two-level systems (e.g., atoms)) (Feynman, et al. J. Appl. Phys. 28, 49 (1957) consider rotations about x axis: x = Jy/|dJy/dx| = Jy/|Jz| uncertainty “blob” z z Looking in -x direction y y J ~ x  = Jy/Jz = J/|J| Jz characterizes fluctuations of final measurements on a series of identical measurements

 = …N = J = N/2, mJ = -N/2 (“coherent spin state”) Many spins (or atoms): Typical case (e.g., all atoms prepared in ground state):  = …N = J = N/2, mJ = -N/2 (“coherent spin state”) z z y y x |Jz| = J = N/2 “standard quantum limit” or: “shot noise limit”

Interferometry M e.g., Ramsey spectroscopy: applied radiation (“/2 pulses”) frequency   0 /2 pulse /2 pulse T M measure

Ramsey spectroscopy (equivalent spin-½ picture): Hi = -i•B = oSzi (Si = ½), o = B B = z B J = i Si intial = …N = J = N/2, mJ = -N/2 (“coherent spin state”) J(0)cos(o - )T (in rotating frame of applied field): Bz = (o - )/ Bz = (o - )/ (Brf >> Bz) Brf/2 J(0) (o - )T Second Ramsey pulse R( = /2,  = 0) First Ramsey pulse Free precession Measure number of spins in  state: Operator Õ = Ñ(tf) = Ĵz + JÎ Ñ(tf) = N/2(1 + cos(o - )T) in laser experiments, laser fields lead to effective Brf

J = i Si (Si = ½), intial = …N = J = N/2, mJ = -N/2 (“coherent spin state”) (in rotating frame of applied field): Bz = (o - )/ Bz = (o - )/ (Brf >> Bz) Brf/2 J(0) (o - )T = /2 Second Ramsey pulse First Ramsey pulse Free precession N Ñ(tf) Ñ(tf) = N/2(1 + cos(o - )T) /2  = (o - )T 

 = N-½ independent of o -  quantum noise: For (0) = J, -J (“coherent” spin state) After second Ramsey pulse ((o - )T = + /2)) frequency fluctuations  fluctations in   y y J(0) x x N coherent state Ñ(tf) = {(o - )T} = N-½ observed for coherent spin states: • Itano et al., Phys. Rev. A47, 3554 (1993). • Santarelli et al., Phys. Rev. Lett. 82, 4619 (1999). “projection noise”   = (o - )T   = N-½ independent of o - 

WANT: coherent state “spin-squeezed” state J(T) J(0) J(T) J(0) Yurke et al., PRA33, 4033 (1986)

Jx2 = Jz2 (in rotated basis). Can implement Jz2 with Generate spin squeezing with HI = Jx2,  U = exp(-itJx2) • Sanders, Phys. Rev. A40, 2417 (1989) (nonlinear beam splitter for photons) • Kitagawa and Ueda, Phys. Rev. A47, 5138 (1993) (potentially realized by Coulomb interaction in electron interferometers) • Milburn, Schneider and James, Fortschr. Physik 48, 801 (2000) (trapped ions) • Srensen & Mlmer, Phys. Rev. A62, 022311 (2000) Jx2 = Jz2 (in rotated basis). Can implement Jz2 with geometric phase gate (previous lecture). U Improvement?

Improvement in S/N: For large N, Imax  0.78N0.35 HI = Jx2 (or Jz2) Improvement in S/N: Kitagawa and Ueda (Phys. Rev. A47, 5138 (1993)) 2 J=1 (N=2) I For large N, Imax  0.78N0.35 integration time avg. reduced by ~ (0.78)2 N0.7 1 10 J=3/2 4 2 (Jx2)t  /2 signal-to-noise ratio:

Simple experiment, N = 2 (9Be+): Meyer et al., PRL 86, 5870 (2001) J(0) Simple experiment, N = 2 (9Be+): Meyer et al., PRL 86, 5870 (2001) 0.9 0.8 0.7 0.6 0.5 0.4 After /2 pulse about BRF   Jz /2 Standard quantum limit anti-squeezing squeezing  = /6  apply HI  Jx2. For N = 2,   cos  + sin   BRF But, in general, J(0) shrinks with squeezing

coherent state squeezed state N Ñ(tf)   = (o - )T  N Ñ(tf)   = (o - )T  N squeezed state Ñ(tf)   = (o - )T  in Meyer et al., PRL 86, 5870 (2001), I = 1.09

“Spin-squeezed” states: Maximum sensitivity? J(0) x  = 1/N “Heisenberg” limit; holds for other operators used to determine rotation angle Kitagawa and Ueda (Phys. Rev. A47, 5138 (1993)): HI = ih(J+2 - J-2) (not known how to efficiently implement this operator)

Other possibilities for generating spin squeezing: Transfer squeezing from harmonic oscillator to spins (e.g., via J+a + J-a† coupling)  Wineland et al., PRA 46, R6797 (1992); Wineland et al., PRA50, 67 (1994)  Kuzmich et al., PRL 79, 4782 (1997); Hald et al., PRL 83, 1319 (1999) (experiment: squeezing transferred from laser beam to atoms) QND measurements:  Kuzmich et al., PRL 85, 1594 (2000)  Geremia et al., Science 304, 270 (2004) (experiment: deterministic spin squeezing with QND measurement + feedback) Collisions in cold atoms  Sørensen et al., Nature 409, 63 (2001) (proposal: collision operators for cold (BEC) atoms looks like HI  Jz2)

Different strategy? recall:   Õ/|dÕ/d| spin-squeezing relies on measuring operator Õ = J. Use other operators? Bollinger et al., Phys. Rev. A54, R4649 (1996) After first “(entangling) Ramsey pulse”: (note: J = 0) After second (normal) Ramsey pulse, measure parity operator: (two values possible: 1, -1)

e.g., N = 6 Õ = N - N (nonentangled) Õ = parity (entangled) Õ  2 -6 Õ  2 Õ (single measurement) ( - 0)T   = 1/N, independent of ( - 0)T demonstrated in Meyer et al., PRL 86, 5870 (2001) (N = 2)

“standard quantum limit:” Heisenberg limited: Y=(| + e-iw0t|) ·(| + e-iw0t|)···(| + e-iw0t|)/2N/2 “standard quantum limit:” w0 non-entangled Y = (|··· + exp(-iN0t) |···)/21/2 Heisenberg limited: entangled “superatom” Nw0

The Ramsey method (with 2 entangling pulses): measure three-ion demonstration 1 2   P  contrast = 0.84 related experiments with photons: Walther et al., Nature 429, 158 (2004) Mitchell et al., Nature 429, 161 (2004) (Didi Leibfried et al. Science 304, 1476 (2004))

f Particle (e.g., photons, atoms) interferometers? this: non-linear analog to the Ramsey experiment with 2 entangling “-pulses:” f this: non-linear beam splitters 3  phase sensitivity or: simulate non-linear beam splitters for N = 1,2,3 with motional modes of trapped ion (Leibfried et al., PRL 89, 247901 (2002))

inaccuracy < 1 part in 1015 single 199Hg+-ion optical frequency standard (Jim Bergquist et al.) 2S1/2 2D5/2 2P1/2 Observe fluorescence ( = 194 nm) 0 = 1.07 x 1015 Hz “” “ “ ~ 6.5 Hz, Q = 1.6x1014 -7 0 7  (Hz) P 2D5/2 state has quadrupole moment. Measure 0 along three B-field directions (Wayne Itano) entry level: inaccuracy < 1 part in 1015  = 0.1 s quadrupole shift signal is lifetime limited

Quantum information mapping: e.g. : cooling and detection of clock ions with quantum information processing methods Basic idea (2 trapped ions): “Logic” ion (e.g., 9Be+) “Clock” ion shared quantized motion • Cool Clock ion with Logic ion • Detect Clock ion by mapping state to Logic ion through motion • increases clock ion possibilities • sympathetic (laser) cooling during clock transition

27Al+ (I = 5/2) 3P1 3P0 Clock  267.4 nm   280 s 1S0   300 s F = 7/2 F = 5/2 F = 3/2 3P1 3P0 Clock  267.4 nm ~ 1.85 THz mI 5/2 3/2 1/2 -1/2 mF 7/2   280 s 1S0   300 s no atomic quadrupole shift weak-Zeeman effect Q ~ 2.7x1018 Preliminary experiment Al+ state mapped to Be+ (Piet Schmidt, Till Rosenband) 9Be+ fluorescence prob.  1 -10 10 relative Al+ detuning (kHz)

Enhanced quantum state detection with Quantum Information Processing long out = |0 + |1 algorithm 0,1 M noise recorder P0 = ||2, P1 = ||2 measure Prob (0  1) = Prob (1  0) =  << 1

Make copies of out and measure all copies ? Ucloneout0 = out|out Ucloneout0 = out|out Universal (unitary) cloning machine: outoutout|out = outout2  outout “no cloning” theorem: Wootters and Zurek, Nature, 299, 802 (1982) inner products: 0|out|(Uclone)† Ucloneout0 = 0|outout0 = outout 

Use controlled-nots: (DiVincenzo, in Scalable Quantum Computers (Wiley-VCH, 2001)) CNOT (0 + 1)0a1  00a1 + 11a1 out = |0 + |1 0a1 0a2 0aN out = (0 + 1)0a10a2 ••• 0aN  00a10a2 ••• 0aN + 11a11a2 ••• 1aN e.g., measure all bits, take a majority vote

example: state detection with atomic qubits: no fluorescence   “1” detect fluorescence   “0”

Ideal case, (detection time fixed) ndetected Number of experiments with ndetected set discriminator here

non-ideal case (added background noise ) Number of experiments with ndetected ndetected ambiguous region

(experimental demonstration: Amplification with one ancilla bit |   = (a|  +b | ) |  CNOT a|  |  +b | |  detect both bits simultaneously (i.e., not majority vote) (experimental demonstration: Tobias Schaetz et al. ‘04) Number of experiments with ndetected ndetected set discriminator here

summary: future: improved interferometry - e.g., spectroscopy and atomic clocks - ideas applicable to photon & atom interferometers quantum information mapping improved detection efficiency future: more and better new kinds of entanglement (and operators) for metrology?

Appendix: Ramsey spectroscopy – connection with (particle) interferometers? Jx = ½(a1†a2 + a2†a1) Jy = -½i(a1†a2 - a2†a1) (Schwinger operators) Jz = ½(a1†a1 - a2†a2) = ½(ñ1 - ñ2) [Jx,Jy] = iJz, etc. Application to (linear) beam splitters (B. Yurke, et al., Phys. Rev. A 33, 4033 (1986).) a1 a2,out a2 a1,out Beam splitter with transmission cos2(/2)

Heisenberg limited interferometry with “dual Fock state input” and linear beam splitters: • Holland and Burnett, Phys. Rev. Lett. 71, 1355 (1993). • Bouyer and Kasevich, Phys. Rev. A56, R1083 (1997). • Pfister, Holland, Noh, and Hall, Phys. Rev. A57, 4004 (1998). Second (linear) beam splitter  second Ramsey pulse: exp(-i /2Jx) n1 detect Ñ  Ñ n2 First (linear) beam splitter first Ramsey pulse: exp(-i/2Jx) Phase shift  Ramsey free Precession: exp(-i(o - )TJz) Dual Fock state: n1n2 = J = n, mJ = 0 Measure variance: Õ = Ñ2 - Ñ 2 or Jz2   1/N, for   0