Recap: Bag of Words for Large Scale Retrieval

Slides:



Advertisements
Similar presentations
EE462 MLCV Lecture 5-6 Object Detection – Boosting Tae-Kyun Kim.
Advertisements

Rapid Object Detection using a Boosted Cascade of Simple Features Paul Viola, Michael Jones Conference on Computer Vision and Pattern Recognition 2001.
Rapid Object Detection using a Boosted Cascade of Simple Features Paul Viola, Michael Jones Conference on Computer Vision and Pattern Recognition 2001.
Face detection State-of-the-art face detection demo (Courtesy Boris Babenko)Boris Babenko.
Face detection Behold a state-of-the-art face detector! (Courtesy Boris Babenko)Boris Babenko.
Recap: Bag of Words for Large Scale Retrieval Slide Credit: Nister Slide.
FATIH CAKIR MELIHCAN TURK F. SUKRU TORUN AHMET CAGRI SIMSEK Content-Based Image Retrieval using the Bag-of-Words Concept.
TP14 - Indexing local features
Face Detection & Synthesis using 3D Models & OpenCV Learning Bit by Bit Don Miller ITP, Spring 2010.
AdaBoost & Its Applications
Face detection Many slides adapted from P. Viola.
Cos 429: Face Detection (Part 2) Viola-Jones and AdaBoost Guest Instructor: Andras Ferencz (Your Regular Instructor: Fei-Fei Li) Thanks to Fei-Fei Li,
EE462 MLCV Lecture 5-6 Object Detection – Boosting Tae-Kyun Kim.
The Viola/Jones Face Detector Prepared with figures taken from “Robust real-time object detection” CRL 2001/01, February 2001.
The Viola/Jones Face Detector (2001)
HCI Final Project Robust Real Time Face Detection Paul Viola, Michael Jones, Robust Real-Time Face Detetion, International Journal of Computer Vision,
1 Learning to Detect Objects in Images via a Sparse, Part-Based Representation S. Agarwal, A. Awan and D. Roth IEEE Transactions on Pattern Analysis and.
Agenda Introduction Bag-of-words model Visual words with spatial location Part-based models Discriminative methods Segmentation and recognition Recognition-based.
Rapid Object Detection using a Boosted Cascade of Simple Features
Generic Object Detection using Feature Maps Oscar Danielsson Stefan Carlsson
Robust Real-time Object Detection by Paul Viola and Michael Jones ICCV 2001 Workshop on Statistical and Computation Theories of Vision Presentation by.
Face detection and recognition Many slides adapted from K. Grauman and D. Lowe.
A Robust Real Time Face Detection. Outline  AdaBoost – Learning Algorithm  Face Detection in real life  Using AdaBoost for Face Detection  Improvements.
“Bag of Words”: recognition using texture : Advanced Machine Perception A. Efros, CMU, Spring 2006 Adopted from Fei-Fei Li, with some slides from.
A Robust Real Time Face Detection. Outline  AdaBoost – Learning Algorithm  Face Detection in real life  Using AdaBoost for Face Detection  Improvements.
Robust Real-Time Object Detection Paul Viola & Michael Jones.
Foundations of Computer Vision Rapid object / face detection using a Boosted Cascade of Simple features Presented by Christos Stoilas Rapid object / face.
Face Detection CSE 576. Face detection State-of-the-art face detection demo (Courtesy Boris Babenko)Boris Babenko.
FACE DETECTION AND RECOGNITION By: Paranjith Singh Lohiya Ravi Babu Lavu.
Face Detection using the Viola-Jones Method
CSE 473/573 Computer Vision and Image Processing (CVIP)
CS 231A Section 1: Linear Algebra & Probability Review
Detecting Pedestrians Using Patterns of Motion and Appearance Paul Viola Microsoft Research Irfan Ullah Dept. of Info. and Comm. Engr. Myongji University.
Window-based models for generic object detection Mei-Chen Yeh 04/24/2012.
Lecture 29: Face Detection Revisited CS4670 / 5670: Computer Vision Noah Snavely.
Face detection Slides adapted Grauman & Liebe’s tutorial
Visual Object Recognition
Robust Real-time Face Detection by Paul Viola and Michael Jones, 2002 Presentation by Kostantina Palla & Alfredo Kalaitzis School of Informatics University.
Tony Jebara, Columbia University Advanced Machine Learning & Perception Instructor: Tony Jebara.
Face Detection Ying Wu Electrical and Computer Engineering Northwestern University, Evanston, IL
Face detection Behold a state-of-the-art face detector! (Courtesy Boris Babenko)Boris Babenko slides adapted from Svetlana Lazebnik.
Adaboost and Object Detection Xu and Arun. Principle of Adaboost Three cobblers with their wits combined equal Zhuge Liang the master mind. Failure is.
Lecture 09 03/01/2012 Shai Avidan הבהרה: החומר המחייב הוא החומר הנלמד בכיתה ולא זה המופיע / לא מופיע במצגת.
The Viola/Jones Face Detector A “paradigmatic” method for real-time object detection Training is slow, but detection is very fast Key ideas Integral images.
Learning to Detect Faces A Large-Scale Application of Machine Learning (This material is not in the text: for further information see the paper by P.
Lecture 15: Eigenfaces CS6670: Computer Vision Noah Snavely.
FACE DETECTION : AMIT BHAMARE. WHAT IS FACE DETECTION ? Face detection is computer based technology which detect the face in digital image. Trivial task.
Face detection Behold a state-of-the-art face detector! (Courtesy Boris Babenko)Boris Babenko slides adapted from Svetlana Lazebnik.
(Courtesy Boris Babenko)
Face detection Many slides adapted from P. Viola.
Face Detection and Recognition Reading: Chapter and, optionally, “Face Recognition using Eigenfaces” by M. Turk and A. Pentland.
Recognition Part II: Face Detection via AdaBoost Linda Shapiro CSE
Things iPhoto thinks are faces
Reading: R. Schapire, A brief introduction to boosting
Highlighted Project 2 Implementations
2. Skin - color filtering.
Cascade for Fast Detection
Recognition Part II: Face Detection via AdaBoost
CS 2770: Computer Vision Feature Matching and Indexing
Session 7: Face Detection (cont.)
Large-scale Instance Retrieval
Presented by Minh Hoai Nguyen Date: 28 March 2007
Lit part of blue dress and shadowed part of white dress are the same color
HCI/ComS 575X: Computational Perception
Object detection as supervised classification
Learning to Detect Faces Rapidly and Robustly
Cos 429: Face Detection (Part 2) Viola-Jones and AdaBoost Guest Instructor: Andras Ferencz (Your Regular Instructor: Fei-Fei Li) Thanks to Fei-Fei.
Face Detection via AdaBoost
ADABOOST(Adaptative Boosting)
Lecture 29: Face Detection Revisited
Presentation transcript:

Recap: Bag of Words for Large Scale Retrieval

Visual words Example: each group of patches belongs to the same visual word Figure from Sivic & Zisserman, ICCV 2003 Kristen Grauman

Summary – large scale retrieval We want to do feature matching (project 2) with a billion images Problem: the all-pairs local feature matching is slow! Solution: quantize features and build bag of feature representation. Lossy! But spatial verification can help. Problem: Finding the overlap in visual words based on the Bags of Features is still too slow! Solution: inverted file index, one lookup per word.

Inverted file index This makes more sense with large vocabularies Imagine an index with the word “the” New query image is mapped to indices of database images that share a word. Kristen Grauman

Summary – large scale retrieval We want to do feature matching (project 2) with a billion images Problem: the all-pairs local feature matching is slow! Solution: quantize features and build bag of feature representation. Lossy! But spatial verification can help. Problem: Finding the overlap in visual words based on the Bags of Features is still too slow! Solution: inverted file index, one lookup per word. Problem: Even quantizing the local features into a visual word is too slow! Solution: vocabulary tree. Lossy!

We then run k-means on the descriptor space We then run k-means on the descriptor space. In this setting, k defines what we call the branch-factor of the tree, which indicates how fast the tree branches. In this illustration, k is three. We then run k-means again, recursively on each of the resulting quantization cells. This defines the vocabulary tree, which is essentially a hierarchical set of cluster centers and their corresponding Voronoi regions. We typically use a branch-factor of 10 and six levels, resulting in a million leaf nodes. We lovingly call this the Mega-Voc.

What else can we borrow from text retrieval? China is forecasting a trade surplus of $90bn (£51bn) to $100bn this year, a threefold increase on 2004's $32bn. The Commerce Ministry said the surplus would be created by a predicted 30% jump in exports to $750bn, compared with a 18% rise in imports to $660bn. The figures are likely to further annoy the US, which has long argued that China's exports are unfairly helped by a deliberately undervalued yuan. Beijing agrees the surplus is too high, but says the yuan is only one factor. Bank of China governor Zhou Xiaochuan said the country also needed to do more to boost domestic demand so more goods stayed within the country. China increased the value of the yuan against the dollar by 2.1% in July and permitted it to trade within a narrow band, but the US wants the yuan to be allowed to trade freely. However, Beijing has made it clear that it will take its time and tread carefully before allowing the yuan to rise further in value. China, trade, surplus, commerce, exports, imports, US, yuan, bank, domestic, foreign, increase, trade, value

tf-idf weighting Term frequency – inverse document frequency Describe frame by frequency of each word within it, downweight words that appear often in the database (Standard weighting for text retrieval) Total number of documents in database Number of occurrences of word i in document d Number of documents word i occurs in, in whole database Number of words in document d Kristen Grauman

Query expansion Query: golf green Results: - How can the grass on the greens at a golf course be so perfect? For example, a skilled golfer expects to reach the green on a par-four hole in ... - Manufactures and sells synthetic golf putting greens and mats. Pluralization, stemming, but more aggressive is additional queries based on initial search results. Query expansion is a technique to increase recall, possibly at the expense of precision. Irrelevant result can cause a `topic drift’: Volkswagen Golf, 1999, Green, 2000cc, petrol, manual, , hatchback, 94000miles, 2.0 GTi, 2 Registered Keepers, HPI Checked, Air-Conditioning, Front and Rear Parking Sensors, ABS, Alarm, Alloy Slide credit: Ondrej Chum

Query Expansion … Results Spatial verification Query image New results New query Chum, Philbin, Sivic, Isard, Zisserman: Total Recall…, ICCV 2007 Slide credit: Ondrej Chum

Scoring retrieval quality Results (ordered): Database size: 10 images Relevant (total): 5 images Query precision = #relevant / #returned recall = #relevant / #total relevant 1 0.8 0.6 precision 0.4 0.2 0.2 0.4 0.6 0.8 1 recall Slide credit: Ondrej Chum

Sliding Window Face Detection with Viola-Jones Computer Vision Ali Borji UWM Many Slides from James Hayes, Lana Lazebnik

Face detection and recognition “Sally”

Consumer application: Apple iPhoto http://www.apple.com/ilife/iphoto/

Consumer application: Apple iPhoto Can be trained to recognize pets! http://www.maclife.com/article/news/iphotos_faces_recognizes_cats

Consumer application: Apple iPhoto Things iPhoto thinks are faces

"The Nikon S60 detects up to 12 faces." Funny Nikon ads "The Nikon S60 detects up to 12 faces."

"The Nikon S60 detects up to 12 faces." Funny Nikon ads "The Nikon S60 detects up to 12 faces."

Challenges of face detection Sliding window detector must evaluate tens of thousands of location/scale combinations Faces are rare: 0–10 per image For computational efficiency, we should try to spend as little time as possible on the non-face windows A megapixel image has ~106 pixels and a comparable number of candidate face locations To avoid having a false positive in every image image, our false positive rate has to be less than 10-6

The Viola/Jones Face Detector A seminal approach to real-time object detection Training is slow, but detection is very fast Key ideas Integral images for fast feature evaluation Boosting for feature selection Attentional cascade for fast rejection of non-face windows P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. CVPR 2001. P. Viola and M. Jones. Robust real-time face detection. IJCV 57(2), 2004. ~8000 citations!

Image Features “Rectangle filters” Value = ∑ (pixels in white area) – ∑ (pixels in black area) For real problems results are only as good as the features used... This is the main piece of ad-hoc (or domain) knowledge Rather than the pixels, we have selected a very large set of simple functions Sensitive to edges and other critcal features of the image ** At multiple scales Since the final classifier is a perceptron it is important that the features be non-linear… otherwise the final classifier will be a simple perceptron. We introduce a threshold to yield binary features

Example Source Result

Fast computation with integral images The integral image computes a value at each pixel (x,y) that is the sum of the pixel values above and to the left of (x,y), inclusive This can quickly be computed in one pass through the image (x,y)

Computing the integral image

Computing the integral image ii(x, y-1) s(x-1, y) i(x, y) Cumulative row sum: s(x, y) = s(x–1, y) + i(x, y) Integral image: ii(x, y) = ii(x, y−1) + s(x, y) MATLAB: ii = cumsum(cumsum(double(i)), 2);

Computing sum within a rectangle Let A,B,C,D be the values of the integral image at the corners of a rectangle Then the sum of original image values within the rectangle can be computed as: sum = A – B – C + D Only 3 additions are required for any size of rectangle! D B A C

Computing a rectangle feature Integral Image -1 +1 +2 -2 -1 +1

Feature selection For a 24x24 detection region, the number of possible rectangle features is ~160,000!

Feature selection For a 24x24 detection region, the number of possible rectangle features is ~160,000! At test time, it is impractical to evaluate the entire feature set Can we create a good classifier using just a small subset of all possible features? How to select such a subset?

value of rectangle feature Boosting Boosting is a classification scheme that combines weak learners into a more accurate ensemble classifier Weak learners based on rectangle filters: Ensemble classification function: value of rectangle feature parity threshold window learned weights

Training procedure Initially, weight each training example equally In each boosting round: Find the weak learner that achieves the lowest weighted training error Raise the weights of training examples misclassified by current weak learner Compute final classifier as linear combination of all weak learners (weight of each learner is directly proportional to its accuracy) Exact formulas for re-weighting and combining weak learners depend on the particular boosting scheme (e.g., AdaBoost) Y. Freund and R. Schapire, A short introduction to boosting, Journal of Japanese Society for Artificial Intelligence, 14(5):771-780, September, 1999.

Boosting intuition Weak Classifier 1 Slide credit: Paul Viola

Boosting illustration Weights Increased

Boosting illustration Weak Classifier 2

Boosting illustration Weights Increased

Boosting illustration Weak Classifier 3

Boosting illustration Final classifier is a combination of weak classifiers

Boosting for face detection First two features selected by boosting: This feature combination can yield 100% detection rate and 50% false positive rate

Boosting vs. SVM Advantages of boosting Disadvantages Integrates classifier training with feature selection Complexity of training is linear instead of quadratic in the number of training examples Flexibility in the choice of weak learners, boosting scheme Testing is fast Easy to implement Disadvantages Needs many training examples Training is slow Often doesn’t work as well as SVM (especially for many-class problems)

Boosting for face detection A 200-feature classifier can yield 95% detection rate and a false positive rate of 1 in 14084 Not good enough! Receiver operating characteristic (ROC) curve

Attentional cascade We start with simple classifiers which reject many of the negative sub-windows while detecting almost all positive sub-windows Positive response from the first classifier triggers the evaluation of a second (more complex) classifier, and so on A negative outcome at any point leads to the immediate rejection of the sub-window FACE IMAGE SUB-WINDOW Classifier 1 T Classifier 3 F NON-FACE Classifier 2

Receiver operating characteristic Attentional cascade Chain classifiers that are progressively more complex and have lower false positive rates: Receiver operating characteristic vs false neg determined by % False Pos % Detection 50 0 100 In general simple classifiers, while they are more efficient, they are also weaker. We could define a computational risk hierarchy (in analogy with structural risk minimization)… A nested set of classifier classes The training process is reminiscent of boosting… - previous classifiers reweight the examples used to train subsequent classifiers The goal of the training process is different - instead of minimizing errors minimize false positives T T T T IMAGE SUB-WINDOW FACE Classifier 1 Classifier 2 Classifier 3 F F F NON-FACE NON-FACE NON-FACE

Attentional cascade The detection rate and the false positive rate of the cascade are found by multiplying the respective rates of the individual stages A detection rate of 0.9 and a false positive rate on the order of 10-6 can be achieved by a 10-stage cascade if each stage has a detection rate of 0.99 (0.9910 ≈ 0.9) and a false positive rate of about 0.30 (0.310 ≈ 6×10-6) T T T T IMAGE SUB-WINDOW FACE Classifier 1 Classifier 2 Classifier 3 F F F NON-FACE NON-FACE NON-FACE

Training the cascade Set target detection and false positive rates for each stage Keep adding features to the current stage until its target rates have been met Need to lower AdaBoost threshold to maximize detection (as opposed to minimizing total classification error) Test on a validation set If the overall false positive rate is not low enough, then add another stage Use false positives from current stage as the negative training examples for the next stage

The implemented system Training Data 5000 faces All frontal, rescaled to 24x24 pixels 300 million non-faces 9500 non-face images Faces are normalized Scale, translation Many variations Across individuals Illumination Pose This situation with negative examples is actually quite common… where negative examples are free.

System performance Training time: “weeks” on 466 MHz Sun workstation 38 layers, total of 6061 features Average of 10 features evaluated per window on test set “On a 700 Mhz Pentium III processor, the face detector can process a 384 by 288 pixel image in about .067 seconds” 15 Hz 15 times faster than previous detector of comparable accuracy (Rowley et al., 1998)

Output of Face Detector on Test Images

Other detection tasks Facial Feature Localization Profile Detection Male vs. female

Profile Detection

Profile Features

Summary: Viola/Jones detector Rectangle features Integral images for fast computation Boosting for feature selection Attentional cascade for fast rejection of negative windows

Face Recognition N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar, "Attribute and Simile Classifiers for Face Verification," ICCV 2009.

Face Recognition Attributes for training Similes for training N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar, "Attribute and Simile Classifiers for Face Verification," ICCV 2009.

Face Recognition Results on Labeled Faces in the Wild Dataset N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar, "Attribute and Simile Classifiers for Face Verification," ICCV 2009.