By: Andrey Fradkin Date: 1/22/08

Slides:



Advertisements
Similar presentations
Jump Testing with Healthcare Stocks Haoming Wang Date: February 13 th, 2008.
Advertisements

A State Contingent Claim Approach To Asset Valuation Kate Barraclough.
STOCK RETURNS AND THE BUSINESS CYCLE Michael DeStefano.
Forecasting Realized Variance Using Jumps Andrey Fradkin Econ 201 4/4/2007.
X Workshop on Quantitative Finance Milan, 29th January 2009 THE IMPLICATIONS OF HERDING ON VOLATILITY. THE CASE OF THE SPANISH STOCK MARKET Natividad Blasco*
Preliminary Data analysis Pat Amatyakul Econ 201 FS 4 February 2009.
Predictive Models of Realized Variance Incorporating Sector and Market Variance Haoming Wang April 16 th 2008.
+ Possible Research Interests Kyu Won Choi Econ 201FS February 16, 2011.
Portfolio Analyzer and Risk Stationarity Lecture 23 Read Chapters 13 and 14 Lecture 23 Portfolio Analyzer Example.xlsx Lecture 23 Portfolio Analyzer 2015.XLSX.
Jump Detection and Analysis Investigation of Media/Telecomm Industry Prad Nadakuduty Presentation 3 3/5/08.
Initial Data Analysis Kunal Jain February 17, 2010 Economics 201FS.
What Moves the Bond Market? Fleming and Remolona.
2/20/08Brian Jansen Co-jumps in the Oil Industry.
Chapter 5: Regression Analysis Part 1: Simple Linear Regression.
Predictive Models of Realized Variation and the Effects of Realized Semi-Variance on Implied Volatility Haoming Wang 3/19/2008.
Estimating Credit Exposure and Economic Capital Using Monte Carlo Simulation Ronald Lagnado Vice President, MKIRisk IPAM Conference on Financial Mathematics.
Predictive Regression Models of Realized Variation and Realized Semi-Variance in the Pharmaceuticals Sector Haoming Wang 2/27/2008.
Exploring Seasonal Variance among Light Sweet Crude and Corn Futures Caleb Seeley 2/27/08.
Financial Time Series Analysis with Wavelets Rishi Kumar Baris Temelkuran.
Dissertation paper Modelling and Forecasting Volatility Index based on the stochastic volatility models MSc Student: LAVINIA-ROXANA DAVID Supervisor: Professor.
Forecasting Implied Volatility Alpha Asset Management Roger Kramer Brian Storey Matt Whalley Kristen Zolla.
Run length and the Predictability of Stock Price Reversals Juan Yao Graham Partington Max Stevenson Finance Discipline, University of Sydney.
Earnings Announcements and Price Behavior Sam Lim.
I. 3 stocks (1997 – 2010) Calculate: RV, BV (Continuous Variation), J Apply models to entire sample – Corsi (2009): HAR-RV – Andersen, Bollerslev and Diebold.
Semivariance Significance in the S&P500 Baishi Wu, 4/7/08.
R&R Homework Statgraphics “Range Method”. DATA OperatorPartTrialMeasure B B B B B B326.5 B B B C
High Frequency Data Analysis Sharon Lee Econ 201 FS February 4, 2009.
Time-Varying Beta: Heterogeneous Autoregressive Beta Model Kunal Jain Spring 2010 Economics 201FS May 5, 2010.
2/20/08Brian Jansen Co-jumps in the Oil Industry.
Jump Correlation within an Industry – A Beginning By: Zed Lamba ECON 201FS.
Exploring Light Sweet Crude Futures Caleb Seeley 2/13/08.
Kian Guan LIM and Christopher TING Singapore Management University
Quarterly Earnings Releases, Expectations, and Price Behavior
Jump Detection and Analysis Investigation of Media/Telecomm Industry
The Foreign Exchange Option Markets in a Small Open Economy Menachem Brenner and Ben Schreiber Research Dept., BOI October 2006.
Factor Analyses and Time-Lagged Regressions
Co-jumps in the Oil Industry
Part I: System Generation in TSL
Semivariance Significance
Peter Van Tassel 18 April 2007 Final Econ 201FS Presentation
Seasonal Variance in Corn Futures
HAR-RV with Sector Variance
The Volatility Premium Puzzle
Econ201FS- New Jump Test Haolan Cai.
ECON 201FS MSFT Daily Realized Variance: Factor Analysis and Time-Lagged Regressions By: Zed Lamba.
Jump Detection and Analysis Investigation of Media/Telecomm Industry
Initial Analysis Siyu Zheng.
Stochastic Volatility Model: High Frequency Data
Formulating a Research Topic
Jump Processes and Trading Volume
Econ 201 FS April 8, 2009 Pongpitch Amatyakul
Presentation 4 Mingwei Lei Econ 201.
Semivariance Significance
Kunal Jain March 24, 2010 Economics 201FS
Sampling Frequency and Jump Detection
Semivariance Significance
Initial Stock Analysis
Semivariance Significance
Preliminary Data Analysis
Sampling Frequency and Jump Detection
Initial Data Analysis Mingwei Lei.
Jump Detection and Analysis Investigation of Media/Telecomm Industry
Seasonal Variance among Light Sweet Crude and Corn Futures
Deeper exploration of volume and Jump statistics
Preliminary Data Analysis
Second Attempt at Jump-Detection and Analysis
MSFT GE About the Stocks April 16, 1997 – January 25, days
Sampling Frequency and Jump Detection
Presentation transcript:

By: Andrey Fradkin Date: 1/22/08 The Informational Content of Implied Volatility in Individual Stocks and the Market By: Andrey Fradkin Date: 1/22/08

Andrey Fradkin: Informational Content of Volatility Introduction Examine relative informational content of implied volatility forecasts against historical volatility forecasts using high frequency data for 10 large cap stocks trading on NYSE and for the SPY. Important prior studies on this subject are Andersen et al(2007) and Jiang and Tian(2006). Find contradictory evidence as to which measure is better. This study is first to use individual stocks, HAR-RV CJ model, RAV, and robust regression in examining this question. HAR-RV-CJ model allows for the separation of the jump component of variance from continuous component of volatility. Andrey Fradkin: Informational Content of Volatility

Andrey Fradkin: Informational Content of Volatility Outline Jump Detection HAR-RV-CJ Models Data Preparation Summary Statistics Summary Plots Significance of Jump Statistics in HAR-RV-CJ Models Andrey Fradkin: Informational Content of Volatility

Background Mathematics Andrey Fradkin 1/31/2007 Background Mathematics Realized Variation: Realized Bi-Power Variation: Andrey Fradkin: Informational Content of Volatility

Background Mathematics Part 2 Andrey Fradkin 1/31/2007 Background Mathematics Part 2 Tri-Power Quarticity Quad-Power Quarticity Andrey Fradkin: Informational Content of Volatility

Background Mathematics Part 3 Andrey Fradkin 1/31/2007 Background Mathematics Part 3 Z-statistics (max version) – Paper uses .999 significance level Andrey Fradkin: Informational Content of Volatility

Andrey Fradkin: Informational Content of Volatility 1/31/2007 Original HAR-RV-J Model (Developed in Andersen, Bollerslev, Diebold 2006, Extended for use with RAV measure in Forsberg and Ghysels(2007)) Andrey Fradkin: Informational Content of Volatility

Andrey Fradkin: Informational Content of Volatility 1/31/2007 The HAR-RV-CJ Model Andrey Fradkin: Informational Content of Volatility

Mincer-Zarnowitz Regressions Standard framework for evaluating implied volatility forecasts. Implied volatilities are obtained from the OptionMetrics database. One implied volatility is used per day. This implied volatility is taken from an at-the-money call option expiring about a month ahead. Andrey Fradkin: Informational Content of Volatility

Andrey Fradkin: Informational Content of Volatility Combined Regressions Combine implied forecasts with historical forecasts. Compare marginal improvements from historical to combined and from implied to combined. Two types of combined forecasts, one using RAV and the other using RV-CJ Andrey Fradkin: Informational Content of Volatility

Andrey Fradkin: Informational Content of Volatility Combined Regressions Andrey Fradkin: Informational Content of Volatility

Andrey Fradkin: Informational Content of Volatility Data Management Uses TAQ high-frequency data that was cleaned by Tzuo Law. Prices are sampled at five minute intervals. 10 equities and the SPY are used in the study. Equities chosen are based on the high open interest in their options. In-Sample data ranges from 2001 through 2004 The Out-of-Sample data encompasses all of 2005 Andrey Fradkin: Informational Content of Volatility

10 Stocks Referred to from now on by Ticker BMY - Bristol-Meyers C - Citigroup GE - General Electric GS -Goldman Sachs HD - Home Depot KO – Coca Cola MDT - Medtronic MOT – Motorola NOK – Nokia TXN – Texas Instruments SPY – SPY RV’s with Vix Implied Volatility SPX – SPY RV’s with SPX Option Implied Volatility Andrey Fradkin: Informational Content of Volatility

Andrey Fradkin: Informational Content of Volatility Summary Statistics Variable Mean Std. Dev. Min Max rv 3.17 4.11 0.27 45.28 imp vol 4.04 3.25 0.45 21.27 BMY rav 1.42 0.73 0.44 6.32 jump 0.04 0.00 6.70 2.98 5.26 0.17 97.38 3.60 3.40 0.10 34.81 Citigroup 1.39 0.84 0.30 9.29 0.02 0.21 5.90 2.65 3.69 0.11 53.55 3.54 2.92 0.40 17.24 GE 1.34 0.75 0.23 6.21 0.01 4.29 2.54 2.88 39.50 4.30 3.35 0.80 20.99 GS 1.36 0.61 4.58 0.03 0.70 24.09 3.26 4.01 50.42 4.43 3.42 1.00 20.56 HD 1.49 0.74 0.26 6.06 0.24 4.83 Andrey Fradkin: Informational Content of Volatility

Andrey Fradkin: Informational Content of Volatility Variable Mean Std. Dev. Min Max rv 1.69 1.90 0.15 25.48 imp vol 2.13 1.56 0.29 11.41 KO rav 1.11 0.49 0.25 4.98 jump 0.02 0.18 0.00 4.18 2.24 2.70 0.22 34.90 2.89 1.86 0.59 12.29 MDT 1.23 0.57 0.30 5.40 0.05 0.56 17.33 6.99 8.89 0.34 175.37 9.90 7.18 1.17 46.31 MOT 2.17 1.04 0.41 10.05 0.09 0.80 19.92 4.17 0.20 43.54 9.21 6.86 1.38 38.54 NOK 0.91 0.32 6.41 0.04 0.65 21.50 7.80 8.35 0.51 62.92 10.14 7.10 1.39 41.08 TXN 2.33 1.14 8.07 0.12 0.90 17.12 1.03 1.30 16.25 1.89 0.42 8.06 SPY 0.85 0.43 0.16 3.54 0.01 0.23 7.94 Andrey Fradkin: Informational Content of Volatility

HAR-RV-CJ – Level Month Ahead – Newey-West Standard Errors Lag(60) BMY C GE GS HD KO MDT MOT NOK TXN SPY SPX cv 0.075** 0.148*** 0.121*** 0.153*** 0.172*** 0.184** 0.108** 0.081* 0.156*** 0.152*** (0.03) (0.02) (0.04) (0.06) c5 0.449*** 0.125 0.256* 0.257** 0.266** 0.171* 0.338** 0.313*** 0.398*** 0.439*** 0.328*** (0.13) (0.08) (0.11) (0.09) (0.12) (0.05) (0.10) (0.07) c22 0.236 0.348*** 0.277** 0.407*** 0.191** 0.333*** 0.214 0.260** 0.242** 0.112 0.212*** j 0.117 0.378** 0.237 -0.064*** 0.013 0.185** -0.094** 0.034 0.052 0.15 -0.135*** (0.29) (0.01) (0.17) j5 -1.284 -0.052 1.472 -0.148 3.444* 0.876 0.509* -0.507 -0.590* -0.631 -0.424** (1.11) (1.08) (2.23) (1.63) (0.56) (0.20) (0.42) (0.30) (0.85) (0.15) j22 8.317 1.388 5.596 -1.300*** 3.114 -1.945** 2.380*** 2.72 -0.684 4.908 0.046 (6.47) (2.64) (10.78) (0.18) (4.72) (0.59) (0.35) (1.76) (0.60) (3.88) (1.00) Constant 0.500* 1.065** 0.797** 0.454** 0.996** 0.532** 0.633*** 2.187** 0.821** 1.732** 0.326** (0.21) (0.41) (0.28) (0.16) (0.71) (0.31) (0.61) * p<0.05, ** p<0.01, *** p<0.001 Andrey Fradkin: Informational Content of Volatility

HAR-RV-CJ – 1 week Newey-West Standard Errors Lag(60) BMY C GE GS HD KO MDT MOT NOK TXN SPY SPX c 0.097*** 0.296*** 0.190*** 0.257*** 0.245*** 0.318** 0.132** 0.104* 0.192** 0.186*** 0.208** c5 0.499*** 0.161* 0.317*** 0.259*** 0.455*** 0.325** 0.553*** 0.501*** 0.468*** 0.544*** 0.447*** c22 0.286** 0.326*** 0.299*** 0.423*** 0.107 0.192* 0.154 0.217* 0.263** 0.15 0.211** j 0.315** 0.884* -0.09 -0.143*** -0.039 0.329** -0.204*** 0.015 0.166*** 0.336 -0.177** j5 -0.271 -0.008 2.994* -0.244** 0.671 0.719 0.423 0.493 -0.684* -0.606 -0.617*** j22 2.491 -0.299 3.539 -0.678* 6.846 -0.669 1.413*** 0.034 -0.78 1.83 -0.167 Constant 0.289* 0.634* 0.416* 0.189 0.422** 0.279** 0.314*** 1.235** 0.365* 0.802** 0.159** Andrey Fradkin: Informational Content of Volatility

HAR-RV-CJ – Level Day Ahead – Newey-West Standard Errors Lag(60) BMY C GE GS HD KO MDT MOT NOK TXN SPY SPX c 0.155*** 0.576*** 0.326*** 0.550*** 0.352*** 0.349* 0.116 0.082 0.394*** 0.329 c5 0.485*** 0.084 0.307*** 0.096 0.447*** 0.448*** 0.627*** 0.579*** 0.359* 0.355*** 0.400* c22 0.278** 0.221*** 0.244*** 0.339** 0.086 0.105 0.15 0.217* 0.250* 0.181* 0.202* j 0.575* 0.600** 1.583 -0.024 -0.821*** -0.062 -0.372*** 0.443** 0.387*** 0.616 -0.249 j5 0.305 1.351* -0.965 -0.482*** 1.308 1.289*** 0.278 -0.051 -0.415 -0.091 -0.541** j22 0.84 -0.392 4.057 -0.374 4.76 -0.584* 1.210*** 0.119 -0.793 0.852 -0.287 Constant 0.213* 0.330* 0.259* 0.078 0.238* 0.167** 0.224*** 0.857** 0.209* 0.463** 0.097** Andrey Fradkin: Informational Content of Volatility

Realized Variance and IV Andrey Fradkin: Informational Content of Volatility

Realized Variance and RAV Andrey Fradkin: Informational Content of Volatility

Andrey Fradkin: Informational Content of Volatility SPY RV and RAV Andrey Fradkin: Informational Content of Volatility