Aimee Bell, Omar Mahassneh, James Singer,

Slides:



Advertisements
Similar presentations
The Delicate Balance of Hydrogen Bond Forces in D-Threoninol 19 Di Zhang, Vanesa Vaquero Vara, Brian C. Dian and Timothy S. Zwier Zwier Research Group,
Advertisements

Fourier transform microwave spectrum of isobutyl mercaptan Kanagawa Institute of Technology 1 and The Graduate University for Advanced Studies 2 Yugo Tanaka,
Helium Nanodroplet Isolation Spectroscopy of NO 2 and van der Waals Complexes Robert Fehnel Kevin Lehmann Department of Chemistry University of Virginia.
Infrared spectra of OCS-C 6 H 6, OCS-C 6 H 6 -He and OCS-C 6 H 6 -Ne van der Waals Complexes M. Dehghany, J. Norooz Oliaee, Mahin Afshari, N. Moazzen-Ahmadi.
MONITORING REACTION PRODUCTS USING CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY Derek S. Frank, Daniel A. Obenchain, Wei Lin, Stewart E. Novick,
Spectroscopy Spectroscopy: interaction of light with matter Average Bond energies (kJ/mol) C-H: 413C=C: 610H-F: 565 H-H: 436C  C: 835.
Alkanes and Cycloalkanes Nanoplasmonic Research Group Organic Chemistry Chapter 2.
Rotational Spectra of Methylene Cyclobutane and Argon-Methylene Cyclobutane Wei Lin, Jovan Gayle Wallace Pringle, Stewart E. Novick Department of Chemistry.
The Study of Noble Gas – Noble Metal Halide Interactions: Fourier Transform Microwave Spectroscopy of XeCuCl Julie M. Michaud and Michael C. L. Gerry University.
Galen Sedo Kenneth Leopold Group University of Minnesota A Microwave and ab initio Study of (CH 3 ) 3 CCN--SO 3.
11 The THz spectrum of GlycolAldehyde M. Goubet, T.R. Huet, I. Haykal, L. Margulès PhLAM, CNRS – Université de Lille 1 O. Pirali, P. Roy AILES beamline,
The inversion motion in the Ne – NH 3 van der Waals dimer studied via microwave spectroscopy Laura E. Downie, Julie M. Michaud and Wolfgang Jäger Department.
Millimeter Wave Spectrum of Iso-Propanol A. MAEDA, I. MEDVEDEV, E. HERBST and F. C. DE LUCIA Department of Physics, The Ohio State University.
Microwave Spectrum of Hydrogen Bonded Hexafluoroisopropanol  water Complex Abhishek Shahi Prof. E. Arunan Group Department of Inorganic and Physical.
The Low Frequency Broadband Fourier Transform Microwave Spectroscopy of Hexafluoropropylene Oxide, CF 3 CFOCF 2 Lu Kang 1, Steven T. Shipman 2, Justin.
Rotational Spectra and Structure of Phenylacetylene-Water Complex and Phenylacetylene-H 2 S (preliminary) Mausumi Goswami, L. Narasimhan, S. T. Manju and.
Microwave Spectrum and Molecular Structure of the Argon-(E )-1-Chloro-1,2-Difluoroethylene Complex Mark D. Marshall, Helen O. Leung, Hannah Tandon, Joseph.
†) Currently at Department of Chemistry, University of Manitoba A Microwave Study of the HNO 3 -N(CH 3 ) 3 Complex Galen Sedo, † Kenneth R. Leopold Department.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
INTERMOLECULAR FORCES (bonds) Occur between molecules Weaker than intramolecular forces.
CONFORMATIONS AND BARRIERS TO METHYL GROUP INTERNAL ROTATION IN TWO ASYMMETRIC ETHERS: PROPYL METHYL ETHER AND BUTYL METHYL ETHER. TC-06: June 19 th, 2012.
The Rotational Spectra of Cyclohexene Oxide and Its Argon van der Waals Complex DANIEL J. FROHMAN, STEWART E. NOVICK AND WALLACE C. PRINGLE Wesleyan University.
61st OSU International Symposium on Molecular Spectroscopy RI12 Rotational spectrum, electric dipole moment and structure of salicyl aldehyde Zbigniew.
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
THE MICROWAVE STUDIES OF GUAIACOL (2-METHOXYPHENOL), ITS ISOTOPOLOGUES & VAN DER WAALS COMPLEXES Ranil M. Gurusinghe, Ashley Fox and Michael J. Tubergen,
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
The Ohio State University International Symposium on Molecular Spectroscopy 68th Meeting - - June 17-21, 2013 Microwave Spectrum of Hexafluoroisopropanol,
Rotational Spectra Of Cyclopropylmethyl Germane And Cyclopropylmethyl Silane: Dipole Moment And Barrier To Methyl Group Rotation Rebecca A. Peebles, Sean.
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
Rotational Spectroscopic Investigations Of CH 4 ---H 2 S Complex Aiswarya Lakshmi P. and E. Arunan Inorganic and Physical Chemistry Indian Institute of.
Galen Sedo 70 th Annual International Symposium on Molecular Spectroscopy MG12, June 22 nd 2015 Microwave Spectra of 9-Fluorenone and Benzophenone.
Infrared--Microwave Double Resonance Spectroscopy of Ar-DF (v = 0,1,2) Justin L. Neill, Gordon G. Brown, and Brooks H. Pate University of Virginia Department.
Determination of the Structure of Neon Cyclopentanone Wei Lin, Andrea J. Minei, Andrew H. Brooks, Wallace C. Pringle, Stewart E. Novick Department of Chemistry.
June 18, nd Symp. on Molec. Spectrosc. Activation of C-H Bonds: Pure Rotational Spectroscopy of HZnCH 3 ( 1 A 1 ) M. A. Flory A. J. Apponi and.
OSU – June – SGK1 ADAM DALY, STEVE KUKOLICH, Dept. of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona CHAKREE TANJAROON,
Intermolecular Forces Chemistry 20. Types of Forces Ionic forces Ionic forces metal + non-metal, ionic crystals metal + non-metal, ionic crystals Within.
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
ROTATIONAL SPECTROSCOPY OF THE METHYL GLYCIDATE-WATER COMPLEX
Department of Chemistry *Department of Chemistry, Mt. Holyoke College,
Department of Chemistry
Mark D. Marshall, Helen O. Leung, Craig J. Nelson & Leonard H. Yoon
1Kanagawa Institute of Technology 3Georgia Southern University
Carlos Cabezas and Yasuki Endo
L. Evangelisti,a,c C. Perez,b,c B.H. Patec
G. S. Grubbs II*, S. A. Cooke⧧, and Stewart E. Novick*,
Hiroyuki Ozeki, Rio Miyahara, Hiroto Ihara, Satoshi Todaka,
The CP-FTMW Spectrum of Bromoperfluoroacetone
Becca Mackenzie Chris Dewberry, Ken Leopold
Department of Chemistry
THE MILLIMETER-WAVE SPECTRUM OF METHACROLEIN
A STUDY OF THE FORMAMIDE-(H2O)3 COMPLEX BY MICROWAVE SPECTROSCOPY
Microwave spectra of 1- and 2-bromobutane
Mahdi Kamaee and Jennifer van Wijngaarden
The Rotational Spectrum of cis- and trans-HSSOH
Far Infrared Spectroscopy of Anti-Vinyl Alcohol
Fourier transform microwave spectra of n-butanol and isobutanol
MICROWAVE SPECTRA FOR THE THREE 13C1 ISOTOPOLOGUES OF PROPENE AND NEW ROTATIONAL CONSTANTS FOR PROPENE AND ITS 13C1 ISOTOPOLOGUES NORMAN C. CRAIG, Department.
THE STUDY OF ACENAPHTHENE AND ITS COMPLEXATION WITH WATER
International Symposium on Molecular Spectroscopy, June 22-26, 2015
The rotational spectrum of the urea isocyanic acid complex
The Conformational Landscape of Serinol
Methylindoles – Microwave Spectroscopy
BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,
Wei Lin, Anan Wu, Zin Lu, Daniel A. Obenchain, Stewart E. Novick
Michal M. Serafin, Sean A. Peebles
John Mullaney Newcastle University
IR-Spectroscopy Atoms in a molecule are constantly in motion
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
COMPREHENSIVE ANALYSIS OF INTERSTELLAR
Elias M. NEEMAN and Thérèse R. HUET
Presentation transcript:

Structural Analysis of 2-Fluorophenol and 3-Fluorophenol Based on FTMW Rotational Spectra Aimee Bell, Omar Mahassneh, James Singer, Durell Desmond, Jennifer van Wijngaarden Department of Chemistry, University of Manitoba MI04 ISMS 71st Meeting June 20, 2016

Fluorinated Compounds Fluorinated compounds are used in a variety of industrial applications Fluorination can be used to manipulate chemical and physical properties Figures: Faslodex – breast cancer drug Fluorine substituted liquid crystals – used in LCDs Fluorine Substituted Liquid Crystals2 Faslodex1 1S. Purser et al. Chem. Soc. Rev. 2008, 37, 320-330. 2R. Berger et al. Chem. Soc. Rev. 2011, 40, 3496-3508.

Interactions Involving Fluorine FTMW techniques allow for H-F interactions to be studied in isolation Intermolecular interactions well documented with FTMW; intramolecular interactions not widely studied -intramolecular interactions more commonly studied with IR Intermolecular Interaction in CH3F•CHF33 Intramolecular Interaction in 2,3,5,6-tetrafluorohydroquinone4 3W. Caminati et al. Angew. Chem. Int. Ed. 2005, 44, 3840-3844. 4A. Kovacs et al. Chem. Phys. 2007, 335, 205-214.

Ecis - Etrans = -2.9 kcal/mol5 2-Fluorophenol Cis-2-FPh Trans-2-FPh -cis stabilized by intramolecular interaction (OH---F) Ecis - Etrans = -2.9 kcal/mol5 5MP2/aug-cc-pVDZ value from M.A. Moreira et al. J. Mol. Struct. 2012, 1009, 11-15.

Ecis - Etrans = 0.2 kcal/mol5 3-Fluorophenol Cis-3-FPh Trans-3-FPh -neither conformer has an intramolecular interaction Ecis - Etrans = 0.2 kcal/mol5 5MP2/aug-cc-pVDZ value from M.A. Moreira et al. J. Mol. Struct. 2012, 1009, 11-15.

Previous MW Studies of FPh MW spectrum of cis-2-FPh A. Dutta et al., J. Mol. Spec. 1985, 114, 274-279. MW spectrum of 3-FPh A.I. Jaman et al., J. Mol. Spec. 1981, 86, 269-274. A.I. Jaman et al., J. Mol. Struct. 1982, 82, 17-21. A. Dutta, A.I. Jaman, Pramana. 1985, 24, 499-502. A.I. Jaman J. Mol. Spec. 2007, 245, 21-25. Proposed r0 Structure of Trans-3-FPh (1982)

Instrumentation Sample Mixing Manifold Microwave Circuit Microwave Source Vacuum Chamber Balle-Flygare FTMW Spectrometer at the University of Manitoba6 6G. Sedo, J. van Wijngaarden, J. Phys. Chem. 2009, 131, 044303.

Experimental Conditions Spectral range: 6 to 26 GHz 13C isotopologues observed in natural abundance ~1 bar of Ar bubbled through heated liquid samples -samples had high boiling points (171-172 C for 2FPh, 178 C for 3FPh) -glass vessels were heated in a bath to raise the vapour pressure Glass Bubbler Vessel in a Heated Bath

2-Fluorophenol Dipole Moments MP2/6-311++G(2d,2p) a Cis-2-FPh μa = 1.17 D, μb = 0.45 D Parent and 13C isotopologues detected Trans-2-FPh μa = -0.74 D, μb = -3.04 D Not detected b μ b μ -trans-2-FPh was not detected; too high energy for observation a

2-Fluorophenol Spectroscopic Constants   Parent 13C1 13C2 13C3 13C4 13C5 13C6 Rotational Constants/MHz A 3337.90081(11) 3326.28501(44) 3328.71441(44) 3295.56795(45) 3326.82647(44) 3328.75201(44) 3295.84576(43) B 2231.934257(95) 2229.887691(53) 2229.894183(53) 2227.103182(53) 2196.063557(53) 2195.168560(53) 2226.174953(53) C 1337.551323(69) 1334.949793(35) 1335.343376(35) 1328.982992(39) 1322.837015(35) 1322.816067(35) 1328.697116(35) Centrifugal Distortion Constants/kHz ΔJ 0.0819(15) 0.0819 ΔJK 0.0546(41) 0.0546 ΔK 0.6050(48) 0.6050 δJ 0.02902(68) 0.02902 δK 0.1074(28) 0.1074 RMS/kHz 1.2 0.63 0.88 0.64 1.7 1.4 # of lines 79 16 15 Δ/amu•Å2 0.0018(4) 0.0016(3) 0.0015(3) 0.0018(3) 0.0020(3) 0.0021(3) 0.0019(3) *Watson’s A-reduced Hamiltonian Ir Representation in Pickett’s SPFIT

3-Fluorophenol Dipole Moments MP2/6-311++G(2d,2p) a a Cis-3-FPh μa = 0.73 D, μb = 0.13 D Parent detected Trans-3-FPh μa = 2.07 D, μb = 2.29 D Parent and 13C isotopologues detected b μ μ b

Sample Transitions of 3-Fluorophenol Cis S/N = 25 Cycles = 310 Trans S/N = 25 Cycles = 115 -cis has weaker signal due to smaller dipole and higher energy

3-Fluorophenol Spectroscopic Constants   Trans Conformer Parent 13C1 13C2 13C3 13C4 13C5 13C6 Cis Conformer Rotational Constants /MHz A 3748.561501(29) 3746.40579(12) 3721.79808(18) 3747.00581(11) 3713.48601(16) 3660.28816(17) 3715.55890(16) 3754.15000(45) B 1797.766571(15) 1788.232502(37) 1797.854969(60) 1789.489242(38) 1788.948278(42) 1797.774597(56) 1787.783733(66) 1792.784980(54) C 1215.094056(12) 1210.506592(18) 1212.310961(29) 1211.145098(17) 1207.374600(20) 1205.668340(20) 1207.062928(28) 1213.406193(34) Centrifugal Distortion Constants /kHz ΔJ 0.06475(11) 0.06475 0.06636(39) ΔJK -0.00562(40) -0.00562 -0.0224(16) ΔK 0.6154(10) 0.6154 0.491(93) δJ 0.022427(55) 0.022427 0.02350(21) δK 0.13276(55) 0.13276 0.1260(84) RMS/kHz 0.484 0.919 1.379 0.797 1.007 0.893 1.241 0.380 # of lines 154 44 41 39 40 36 37 47 Δ/amu•Å2 -0.0168(9) -0.017(2) -0.018(3) -0.015(2) -0.017(3) -0.019(3) *Watson’s A-reduced Hamiltonian Ir Representation in Pickett’s SPFIT

Cis-2-FPh Aromatic Ring Geometry Bond Lengths Angles 1 2 3 4 5 6 C1-C2 δre = -0.001 Å δr0 = -0.003(2) Å C2-C3 δre = -0.012 Å δr0 = -0.015(3) Å C3-C4 δre = 0.002 Å δr0 = 0.001(3) Å C4-C5 δre = 0.000 Å δr0 = 0.006(4) Å C5-C6 δre = 0.001 Å δr0 = 0.002(3) Å C6-C1 δr0 = -0.003(3) Å C1-C2-C3 δre = 2.9o δr0 = 3.1(3)o C2-C3-C4 δre = -1.8o δr0 = -1.9(4)o C3-C4-C5 δre = 0.5o δr0 = 0.3(4)o C4-C5-C6 δre = 0.0o δr0 = 0.1(3)o C5-C6-C1 δre = 0.4o C6-C1-C2 δre = -1.9o δr0 = -1.6(3)o re = eqm structures from Gaussian (MP2), r0 = ground state effective structures from STRFIT -C1-C2 not shortened since both atoms are bonded to electronegative atoms (O and F) δ = (Cis-2-FPh Value) – (Phenol re Value)

Trans-3-FPh Aromatic Ring Geometry Bond Lengths Angles C1-C2 δre = 0.001 Å δr0 = 0.001(5) Å C2-C3 δre = -0.009 Å δr0 = -0.011(5) Å C3-C4 δre = -0.008 Å δr0 = -0.011(2) Å C4-C5 δre = -0.001 Å δr0 = 0.003(3) Å C5-C6 δre = 0.000 Å δr0 = -0.001(3) Å C6-C1 δr0 = -0.005(2) Å C6-C1-C2 δre = 0.3o δr0 = 0.8(5)o C1-C2-C3 δre = -1.5o δr0 = -2.2(5)o C2-C3-C4 δre = 2.5o δr0 = 3.3(3)o C3-C4-C5 δre = -1.7o δr0 = -2.1(4)o C4-C5-C6 δre = 0.6o δr0 = 0.7(3)o C5-C6-C1 δre = -0.2o δr0 = -0.5(5)o 1 2 3 4 5 6 -deviations from phenol occur based on position of the F-atom -electronegativity of F changes the hybridization character of nearby atoms δ = (Cis-2-FPh Value) – (Phenol re Value)

Additional r0 Geometry 116.75(13)o 120.33(13)o 117.71(13)o 118.37(13)o -<(C-C-F) angles also determined in r0 analysis 118.37(13)o

NBO Analysis of Cis-2-FPh Fluorine lone pair donates to π* orbital of OH Not seen in other isomers of fluorophenol Analogous interaction in cis-2- cyanophenol: 0.72 kcal/mol7 -NBO = natural bond orbital (done with Gaussian) -analysis done for all fluorophenols and phenol -OH---F interaction energy: 0.73 kcal/mol (~3 kJ/mol) Eint = 0.73 kcal/mol MP2/6-311++G(2d,2p) 7R. Conrad et al. Phys. Chem. Chem. Phys. 2010, 12, 8350-8356.

Theoretically, Is There a Hydrogen Bond in Cis-2-FPh? IUPAC Minimum Angle for X-H•••Y H-bond: 110o 8 ( 2.212 Å 112.3o van der Waals Radii Sum of H+F: 2.56 Å 9 MP2/6-311++G(2d,2p) 8E. Arunan et al. Pure Appl. Chem. 2011, 83, 1637-1641. 9R.S. Rowland, R. Taylor. J. Phys.Chem. 1996, 100, 7384-7391.

Concurrent Work 2-FPh and 3-FPh rovibrational spectra observed in far-IR region Out-of-plane OH torsion vibration being analyzed Trans-2-FPh 344 cm-1 Cis-2-FPh 381 cm-1 Trans-3-FPh 311 cm-1 Cis-3-FPh 319 cm-1

Acknowledgements Wenhao Sun

Effects of Electronegativity -0.5 0.2 0.0 -0.4 Δ = 0.7 Δ = 0.4 Δ = 0.2 s p e- s This explains why C2-C3 is shortened in cis-2-FPh and why C1-C2 is not. -0.518 +0.518