Porosity Aware Buffered Steiner Tree Construction C. Alpert G. Gandham S. Quay IBM Corp M. Hrkic Univ Illinois Chicago J. Hu Texas A&M Univ.

Slides:



Advertisements
Similar presentations
Gate Sizing for Cell Library Based Designs Shiyan Hu*, Mahesh Ketkar**, Jiang Hu* *Dept of ECE, Texas A&M University **Intel Corporation.
Advertisements

Gregory Shklover, Ben Emanuel Intel Corporation MATAM, Haifa 31015, Israel Simultaneous Clock and Data Gate Sizing Algorithm with Common Global Objective.
OCV-Aware Top-Level Clock Tree Optimization
Advanced Interconnect Optimizations. Buffers Improve Slack RAT = 300 Delay = 350 Slack = -50 RAT = 700 Delay = 600 Slack = 100 RAT = 300 Delay = 250 Slack.
Ispd-2007 Repeater Insertion for Concurrent Setup and Hold Time Violations with Power-Delay Trade-Off Salim Chowdhury John Lillis Sun Microsystems University.
4/22/ Clock Network Synthesis Prof. Shiyan Hu Office: EREC 731.
Buffer and FF Insertion Slides from Charles J. Alpert IBM Corp.
ELEN 468 Lecture 261 ELEN 468 Advanced Logic Design Lecture 26 Interconnect Timing Optimization.
Confidentiality/date line: 13pt Arial Regular, white Maximum length: 1 line Information separated by vertical strokes, with two spaces on either side Disclaimer.
1 Interconnect Layout Optimization by Simultaneous Steiner Tree Construction and Buffer Insertion Presented By Cesare Ferri Takumi Okamoto, Jason Kong.
National Tsing Hua University Po-Yang Hsu,Hsien-Te Chen,
Coupling-Aware Length-Ratio- Matching Routing for Capacitor Arrays in Analog Integrated Circuits Kuan-Hsien Ho, Hung-Chih Ou, Yao-Wen Chang and Hui-Fang.
FastPlace: Efficient Analytical Placement using Cell Shifting, Iterative Local Refinement and a Hybrid Net Model FastPlace: Efficient Analytical Placement.
Improved Algorithms for Link- Based Non-tree Clock Network for Skew Variability Reduction Anand Rajaram †‡ David Z. Pan † Jiang Hu * † Dept. of ECE, UT-Austin.
An Optimal Algorithm of Adjustable Delay Buffer Insertion for Solving Clock Skew Variation Problem Juyeon Kim, Deokjin Joo, Taehan Kim DAC’13.
Low-power Clock Trees for CPUs Dong-Jin Lee, Myung-Chul Kim and Igor L. Markov Dept. of EECS, University of Michigan 1 ICCAD 2010, Dong-Jin Lee, University.
Minimum-Buffered Routing of Non- Critical Nets for Slew Rate and Reliability Control Supported by Cadence Design Systems, Inc. and the MARCO Gigascale.
38 th Design Automation Conference, Las Vegas, June 19, 2001 Creating and Exploiting Flexibility in Steiner Trees Elaheh Bozorgzadeh, Ryan Kastner, Majid.
Interconnect Optimizations. A scaling primer Ideal process scaling: –Device geometries shrink by  = 0.7x) Device delay shrinks by  –Wire geometries.
EE4271 VLSI Design Interconnect Optimizations Buffer Insertion.
Fast and Area-Efficient Phase Conflict Detection and Correction in Standard-Cell Layouts Charles Chiang, Synopsys Andrew B. Kahng, UC San Diego Subarna.
Interconnect Optimizations
EE4271 VLSI Design Advanced Interconnect Optimizations Buffer Insertion.
ELEN 468 Lecture 271 ELEN 468 Advanced Logic Design Lecture 27 Interconnect Timing Optimization II.
Pei-Ci Wu Martin D. F. Wong On Timing Closure: Buffer Insertion for Hold-Violation Removal DAC’14.
Interconnect Synthesis. Buffering Related Interconnect Synthesis Consider –Layer assignment –Wire sizing –Buffer polarity –Driver sizing –Generalized.
Advanced Interconnect Optimizations. Timing Driven Buffering Problem Formulation Given –A Steiner tree –RAT at each sink –A buffer type –RC parameters.
Page 1 Department of Electrical Engineering National Chung Cheng University, Chiayi, Taiwan Power Optimization for Clock Network with Clock Gate Cloning.
MGR: Multi-Level Global Router Yue Xu and Chris Chu Department of Electrical and Computer Engineering Iowa State University ICCAD
A Topology-based ECO Routing Methodology for Mask Cost Minimization Po-Hsun Wu, Shang-Ya Bai, and Tsung-Yi Ho Department of Computer Science and Information.
Modern VLSI Design 4e: Chapter 4 Copyright  2008 Wayne Wolf Topics n Interconnect design. n Crosstalk. n Power optimization.
Xin-Wei Shih and Yao-Wen Chang.  Introduction  Problem formulation  Algorithms  Experimental results  Conclusions.
1 Coupling Aware Timing Optimization and Antenna Avoidance in Layer Assignment Di Wu, Jiang Hu and Rabi Mahapatra Texas A&M University.
A Polynomial Time Approximation Scheme For Timing Constrained Minimum Cost Layer Assignment Shiyan Hu*, Zhuo Li**, Charles J. Alpert** *Dept of Electrical.
Archer: A History-Driven Global Routing Algorithm Mustafa Ozdal Intel Corporation Martin D. F. Wong Univ. of Illinois at Urbana-Champaign Mustafa Ozdal.
An Efficient Clustering Algorithm For Low Power Clock Tree Synthesis Rupesh S. Shelar Enterprise Microprocessor Group Intel Corporation, Hillsboro, OR.
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 5: Global Routing © KLMH Lienig 1 EECS 527 Paper Presentation Techniques for Fast.
Thermal-aware Steiner Routing for 3D Stacked ICs M. Pathak and S.K. Lim Georgia Institute of Technology ICCAD 07.
ARCHER:A HISTORY-DRIVEN GLOBAL ROUTING ALGORITHM Muhammet Mustafa Ozdal, Martin D. F. Wong ICCAD ’ 07.
Modern VLSI Design 3e: Chapter 4 Copyright  1998, 2002 Prentice Hall PTR Topics n Interconnect design. n Crosstalk. n Power optimization.
A Faster Approximation Scheme for Timing Driven Minimum Cost Layer Assignment Shiyan Hu*, Zhuo Li**, and Charles J. Alpert** *Dept of ECE, Michigan Technological.
Pattern Sensitive Placement For Manufacturability Shiyan Hu, Jiang Hu Department of Electrical and Computer Engineering Texas A&M University College Station,
Pattern Sensitive Placement For Manufacturability Shiyan Hu, Jiang Hu Department of Electrical and Computer Engineering Texas A&M University College Station,
1 Efficient Obstacle-Avoiding Rectilinear Steiner Tree Construction Chung-Wei Lin, Szu-Yu Chen, Chi-Feng Li, Yao-Wen Chang, Chia-Lin Yang National Taiwan.
1 ε -Optimal Minimum-Delay/Area Zero-Skew Clock Tree Wire-Sizing in Pseudo-Polynomial Time Jeng-Liang Tsai Tsung-Hao Chen Charlie Chung-Ping Chen (National.
Fast Algorithms for Slew Constrained Minimum Cost Buffering S. Hu*, C. Alpert**, J. Hu*, S. Karandikar**, Z. Li*, W. Shi* and C. Sze** *Dept of ECE, Texas.
Simultaneous Analog Placement and Routing with Current Flow and Current Density Considerations H.C. Ou, H.C.C. Chien and Y.W. Chang Electronics Engineering,
Physical Synthesis Buffer Insertion, Gate Sizing, Wire Sizing,
Routing Tree Construction with Buffer Insertion under Obstacle Constraints Ying Rao, Tianxiang Yang Fall 2002.
Maze Routing Algorithms with Exact Matching Constraints for Analog and Mixed Signal Designs M. M. Ozdal and R. F. Hentschke Intel Corporation ICCAD 2012.
BOB-Router: A New Buffering-Aware Global Router with Over-the-Block Routing Resources Yilin Zhang1, Salim Chowdhury2 and David Z. Pan1 1 Department of.
An Efficient Surface-Based Low-Power Buffer Insertion Algorithm
1ISPD'03 Process Variation Aware Clock Tree Routing Bing Lu Cadence Jiang Hu Texas A&M Univ Gary Ellis IBM Corp Haihua Su IBM Corp.
High-Performance Global Routing with Fast Overflow Reduction Huang-Yu Chen, Chin-Hsiung Hsu, and Yao-Wen Chang National Taiwan University Taiwan.
Incorporating Driver Sizing Into Buffer Insertion Via a Delay Penalty Technique Chuck Alpert, IBM Chris Chu, Iowa State Milos Hrkic, UIC Jiang Hu, IBM.
A Fully Polynomial Time Approximation Scheme for Timing Driven Minimum Cost Buffer Insertion Shiyan Hu*, Zhuo Li**, Charles Alpert** *Dept of Electrical.
A Fully Polynomial Time Approximation Scheme for Timing Driven Minimum Cost Buffer Insertion Shiyan Hu*, Zhuo Li**, Charles Alpert** *Dept of Electrical.
A Novel Timing-Driven Global Routing Algorithm Considering Coupling Effects for High Performance Circuit Design Jingyu Xu, Xianlong Hong, Tong Jing, Yici.
An O(bn 2 ) Time Algorithm for Optimal Buffer Insertion with b Buffer Types Authors: Zhuo Li and Weiping Shi Presenter: Sunil Khatri Department of Electrical.
An O(nm) Time Algorithm for Optimal Buffer Insertion of m Sink Nets Zhuo Li and Weiping Shi {zhuoli, Texas A&M University College Station,
1 Double-Patterning Aware DSA Template Guided Cut Redistribution for Advanced 1-D Gridded Designs Zhi-Wen Lin and Yao-Wen Chang National Taiwan University.
6/19/ VLSI Physical Design Automation Prof. David Pan Office: ACES Placement (3)
Unified Adaptivity Optimization of Clock and Logic Signals Shiyan Hu and Jiang Hu Dept of Electrical and Computer Engineering Texas A&M University.
Chapter 7 – Specialized Routing
Buffer Insertion with Adaptive Blockage Avoidance
2 University of California, Los Angeles
Buffered tree construction for timing optimization, slew rate, and reliability control Abstract: With the rapid scaling of IC technology, buffer insertion.
Buffered Steiner Trees for Difficult Instances
Objectives What have we learned? What are we going to learn?
Under a Concurrent and Hierarchical Scheme
Presentation transcript:

Porosity Aware Buffered Steiner Tree Construction C. Alpert G. Gandham S. Quay IBM Corp M. Hrkic Univ Illinois Chicago J. Hu Texas A&M Univ

Outline Introduction and Previous work Problem formulation Algorithm Experimental results Conclusion

Buffer Insertion Improve timing –Drive long wire –Shield load from critical path Van Ginnekens Algorithm –Given tree topology fixed –Find optimal solution at fast speed Slack

If There Are Big Blockages

Previous Works Simultaneous tree construction and buffer insertion –Buffer blockage driven Recursively Merging and Embedding [Cong and Yuan, DAC 00] Graph-based[Tang, et al., ICCAD 01] –General purpose SP-Tree [Hrkic and Lillis, ISPD 02] –Excellent solution quality –High complexity Sequential tree construction + buffer insertion –Adaptive blockage avoidance [Hu, et al., ISPD 02] –Very good solution quality –Practical computation speed

If There Are Many Small Blockages

Porosity Has to Be Considered Handling small blockages will slow down computation Buffers in dense region may be spiraled away No previous work handles porosity directly

Express Porosity through Tile Graph For a tile g A(g): tile area a(g): usage area d(g) = a(g)/A(g) Porosity cost is d 2 (g), if a buffer is placed in g

Problem Formulation Porosity-aware Buffered Steiner Tree Problem: Given –A net N = {v 0, v 1, …, v n } –Load capacitance c(v i ) and required arrival time q(v i ) –Tile graph G(V G, E G ) Construct a Steiner tree T(V,E), such that –Required arrival time q(v i ) are satisfied –Total porosity cost is minimized

Observation Easy to deal with node-to-node path –Congestion can be avoided by rerouting without affecting timing Hard to deal with Steiner nodes –Moving Steiner nodes may degrade timing

Basic Strategy Construct a timing driven Steiner tree regardless porosity Adjust Steiner nodes simultaneously with length-based buffer insertion –Adjustment range need to be restrained –A Steiner node is moved only when buffer is needed there

Length-based Buffer Insertion Simple buffering following rule of thumb –Capacitance load of driver/buffer bound L Dynamic programming based Candidate solutions are propagated bottom- up Solution is characterized by load capacitance and porosity cost A solution with greater load and cost will be pruned L=2

Plate: Adjustment Range

Plate-based Adjustment Integrate Steiner node adjustment with length-based buffer insertion Solutions are propagated to and merged at each tile of plate Merged solutions at each tile are further propagated toward root Alternative topologies are generated A candidate topology is selected only when it is a part of min cost solution at the root

Example of Plate-based Adjustment

Methodology Flow 1.Timing-driven Steiner tree ( C-Tree ) 2.Plate-based adjustment 3.Local blockage avoidance If a wire overlaps with blockage, it is rerouted within its local tiles 4.Van Ginneken style buffer insertion

Experiment Setup Integrated into industrial physical synthesis tool Three testcases –155K, 334K and 293K cells –209, 848 and 18 blockages FOM(Figure of Merit): cumulative negative slacks

Experimental Result on FOM

Resource Consumption Wirelength increase is negligible CPU time is increased significantly –Plate-based adjustment –More candidate buffer locations enabled

Result Regardless Porosity

Result Considering Porosity

Conclusion Porosity need to be considered in buffered Steiner tree construction A plate-based adjustment in a four- stage flow is proposed as a solution Experiments with industrial physical synthesis system show encouraging results

Thank you !