Rough surface reflections Gregory Hart Steve Turley BYU XUV
Why do we care? Astronomy Computers Microscopy He Photolithography imaging BYU XUV
XUV 1-100 nm Low reflectance 𝑛≈1 𝜅≈1 𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑣𝑒 BYU XUV
BYU XUV
The Equations 𝐸 𝑧 𝑖𝑛𝑐𝑙 𝑥,𝑦 = 𝐾 𝑡 𝑥,𝑦 −𝑖 𝑘 1 𝜂 1 𝐽 𝑧 𝑥 ′ , 𝑦 ′ 𝑖 4 𝐻 0 1 𝑘 1 𝑟 𝑑 𝑠 ′ + 𝜕 𝜕𝑥 𝑦 ∙ 𝑡 𝑥 ′ , 𝑦 ′ 𝐾 𝑡 𝑥 ′ , 𝑦 ′ 𝑖 4 𝐻 0 1 𝑘 1 𝑟 𝑑 𝑠 ′ − 𝜕 𝜕𝑦 𝑥 ∙ 𝑡 𝑥 ′ , 𝑦 ′ 𝐾 𝑡 𝑥 ′ , 𝑦 ′ 𝑖 4 𝐻 0 1 𝑘 1 𝑟 𝑑 𝑠 ′ 0= 𝐾 𝑡 𝑥,𝑦 −𝑖 𝑘 2 𝜂 2 𝐽 𝑧 𝑥 ′ , 𝑦 ′ 𝑖 4 𝐻 0 1 𝑘 2 𝑟 𝑑 𝑠 ′ + 𝜕 𝜕𝑥 𝑦 ∙ 𝑡 𝑥 ′ , 𝑦 ′ 𝐾 𝑡 𝑥 ′ , 𝑦 ′ 𝑖 4 𝐻 0 1 𝑘 2 𝑟 𝑑 𝑠 ′ 𝑦 ∙ 𝑡 𝑥 ′ , 𝑦 ′ 𝐾 𝑡 𝑥 ′ , 𝑦 ′ 𝑖 4 𝐻 0 1 𝑘 2 𝑟 𝑑 𝑠 ′ − 𝜕 𝜕𝑦 𝑥 ∙ 𝑡 𝑥 ′ , 𝑦 ′ 𝐾 𝑡 𝑥 ′ , 𝑦 ′ 𝑖 4 𝐻 0 1 𝑘 2 𝑟 𝑑 𝑠 ′ 𝑥 ∙ 𝑡 𝑥 ′ , 𝑦 ′ 𝐾 𝑡 𝑥 ′ , 𝑦 ′ 𝑖 4 𝐻 0 1 𝑘 2 𝑟 𝑑 𝑠 ′ 𝛻∙( 𝜖 0 E)= 𝜌 𝑒 𝛻∙( 𝜇 0 𝐇)= 𝜌 𝑚 𝛻×𝐄=𝑖ω 𝜇 0 𝐇−𝑲 𝛻×𝐇=−𝑖ω ϵ 0 𝐄+𝑱 𝛻 2 + 𝑘 2 𝐄=0 𝛻 2 − 𝑘 2 𝐁=0 Assumption time dependence is harmonic, mu = mu0, epsilon is a scalar. S polarized makes it a scalar problem in z. BYU XUV
Numerically 𝐸= 1 2 𝐾 𝑡 + 𝑖𝑗 𝑀 𝑖𝑗 1 𝐽 𝑧 𝑖 + 𝑖𝑗 𝑁 𝑖𝑗 1 𝐾 𝑡 0=− 1 2 𝐾 𝑡 + 𝑖 𝑀 𝑖 2 𝐽 𝑧 𝑖 + 𝑖 𝑁 2 𝐾 𝑡 𝑀 𝑖𝑗 𝜔 = 𝑘 𝜔 𝜂 𝜔 4 𝑐 𝑖 𝑆 𝑖 𝐻 0 1 𝑘 𝜔 𝑟 𝑖𝑗 𝑁 𝑖𝑗 𝜔 = 𝑖 𝑘 𝜔 4 𝑐 𝑖 𝑆 𝑖 𝐻 1 1 ( 𝑘 𝜔 𝑟 𝑖𝑗 ) 𝑟 𝑖𝑗 [ cos 𝜃 𝑖 ′ 𝑦 𝑗 − 𝑦 𝑖 ′ − sin 𝜃 𝑖 ′ 𝑥 𝑗 − 𝑥 𝑖 ′ ] 𝐸 0 = ( 1 2 + 𝑁 1 ) 𝑀 1 (− 1 2 + 𝑁 2 ) 𝑀 2 𝐾 𝐽 BYU XUV
Test .Smooth surface incident at 20° BYU XUV
Test .Cylindical surface incident at 20° BYU XUV
Correlation BYU XUV
Discussion The program works for simple cases Found single processor limits Random roughnesses have same overall effect 2D surface Parallel processing BYU XUV
Acknowledgement Steve Turley Jed Johnson Fulton Supercomputing Lab BYU Physics and Astronomy BYU XUV