Chapter 6 Linear Programming: The Simplex Method

Slides:



Advertisements
Similar presentations
The simplex algorithm The simplex algorithm is the classical method for solving linear programs. Its running time is not polynomial in the worst case.
Advertisements

Chapter 6 Linear Programming: The Simplex Method
Chapter 6 Linear Programming: The Simplex Method
Dragan Jovicic Harvinder Singh
Optimization of thermal processes2007/2008 Optimization of thermal processes Maciej Marek Czestochowa University of Technology Institute of Thermal Machinery.
Linear Inequalities and Linear Programming Chapter 5 Dr.Hayk Melikyan/ Department of Mathematics and CS/ Linear Programming in two dimensions:
Learning Objectives for Section 5.3
Chapter 5 Linear Inequalities and Linear Programming Section 3 Linear Programming in Two Dimensions: A Geometric Approach.
Basic Feasible Solutions: Recap MS&E 211. WILL FOLLOW A CELEBRATED INTELLECTUAL TEACHING TRADITION.
Chapter 6 Linear Programming: The Simplex Method
Linear Inequalities and Linear Programming Chapter 5
The Simplex Method: Standard Maximization Problems
Operation Research Chapter 3 Simplex Method.
5.6 Maximization and Minimization with Mixed Problem Constraints
MIT and James Orlin © Chapter 3. The simplex algorithm Putting Linear Programs into standard form Introduction to Simplex Algorithm.
Stevenson and Ozgur First Edition Introduction to Management Science with Spreadsheets McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies,
Chapter 5 Linear Inequalities and Linear Programming Section R Review.
Linear Inequalities and Linear Programming Chapter 5
LINEAR PROGRAMMING SIMPLEX METHOD.
Chapter 19 Linear Programming McGraw-Hill/Irwin
Linear Programming - Standard Form
Learning Objectives for Section 6.2
Slide Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley.
Chapter 6 Linear Programming: The Simplex Method
Chapter 6 Linear Programming: The Simplex Method Section 2 The Simplex Method: Maximization with Problem Constraints of the Form ≤
Barnett/Ziegler/Byleen Finite Mathematics 11e1 Learning Objectives for Section 6.4 The student will be able to set up and solve linear programming problems.
Chapter 6 Linear Programming: The Simplex Method Section R Review.
Linear Programming McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
5.3 Geometric Introduction to the Simplex Method The geometric method of the previous section is limited in that it is only useful for problems involving.
Chapter 6 Linear Programming: The Simplex Method Section 3 The Dual Problem: Minimization with Problem Constraints of the Form ≥
Chapter 6 Linear Programming: The Simplex Method Section 4 Maximization and Minimization with Problem Constraints.
Barnett/Ziegler/Byleen Finite Mathematics 11e1 Learning Objectives for Section 6.3 The student will be able to formulate the dual problem. The student.
OR Chapter 8. General LP Problems Converting other forms to general LP problem : min c’x  - max (-c)’x   = by adding a nonnegative slack variable.
McGraw-Hill/Irwin Copyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Supplement 6 Linear Programming.
Sullivan Algebra and Trigonometry: Section 12.9 Objectives of this Section Set Up a Linear Programming Problem Solve a Linear Programming Problem.
Business Mathematics MTH-367 Lecture 14. Last Lecture Summary: Finished Sec and Sec.10.3 Alternative Optimal Solutions No Feasible Solution and.
Discrete Optimization
7. Linear Programming (Simplex Method)
An Introduction to Linear Programming
Linear Programming for Solving the DSS Problems
Linear Programming Many problems take the form of maximizing or minimizing an objective, given limited resources and competing constraints. specify the.
EMGT 6412/MATH 6665 Mathematical Programming Spring 2016
Module Outline Introduction The Linear Programming Model
Chapter 2 An Introduction to Linear Programming
A seminar talk on “SOLVING LINEAR PROGRAMMING PROBLEM BY GRAPHICAL METHOD” By S K Indrajitsingha M.Sc.
Chapter 5 Linear Inequalities and Linear Programming
Lecture 3.
The Simplex Method The geometric method of solving linear programming problems presented before. The graphical method is useful only for problems involving.
10CS661 OPERATION RESEARCH Engineered for Tomorrow.
Linear programming Simplex method.
Linear Programming.
Chapter 3 The Simplex Method and Sensitivity Analysis
Chapter 5 Linear Inequalities and Linear Programming
Chapter 5 Linear Inequalities and Linear Programming
Linear Programming.
Linear Programming I: Simplex method
Linear programming Simplex method.
Copyright © 2019 Pearson Education, Inc.
Chapter 2. Simplex method
TBF General Mathematics - II Lecture – 9 : Linear Programming
Graphical solution A Graphical Solution Procedure (LPs with 2 decision variables can be solved/viewed this way.) 1. Plot each constraint as an equation.
Simplex method (algebraic interpretation)
Chapter 10: Iterative Improvement
BASIC FEASIBLE SOLUTIONS
College Algebra Sixth Edition
Presentation transcript:

Chapter 6 Linear Programming: The Simplex Method Section 1 A Geometric Introduction to the Simplex Method

Learning Objectives for Section 6 Learning Objectives for Section 6.1 Linear Programming - Simplex Method The student will be able to formulate standard maximization problems in standard form. The student will be able to use slack variables in formulating standard maximization problems. The student will be able to distinguish between basic and nonbasic variables and between basic solutions and basic feasible solutions. The student will be able to find basic feasible solutions and use the Simplex Method Barnett/Ziegler/Byleen Finite Mathematics 12e

6.1 Geometric Introduction to the Simplex Method The geometric method of linear programming from the previous section is limited in that it is only useful for problems involving two decision variables and cannot be used for applications involving three or more decision variables. It is for this reason that a more sophisticated method must be developed. Barnett/Ziegler/Byleen Finite Mathematics 12e

George Dantzig 1914 - 2005 George B. Dantzig developed such a method in 1947 while being assigned to the U.S. military. Ideally suited to computer use, the method is used routinely on applied problems involving hundreds and even thousands of variables and problem constraints. Barnett/Ziegler/Byleen Finite Mathematics 12e

An Interview with George Dantzig, Inventor of the Simplex Method http://www.e-optimization.com/directory/trailblazers/dantzig/interview_opt.cfm IRV How do you explain optimization to people who haven't heard of it? GEORGE I would illustrate the concept using simple examples such as the diet problem or the blending of crude oils to make high-octane gasoline. IRV What do you think has held optimization back from becoming more popular? GEORGE It is a technical idea that needs to be demonstrated over and over again. We need to show that firms that use it make more money than those who don't. IRV Can you recall when optimization started to become used as a word in the field? GEORGE From the very beginning of linear programming in 1947, terms like maximizing, minimizing, extremizing, optimizing a linear form and optimizing a linear program were used. Barnett/Ziegler/Byleen Finite Mathematics 12e

An Interview with George Dantzig (continued) GEORGE The whole idea of objective function, which of course optimization applies, was not known prior to linear programming. In other words, the idea of optimizing something was something that nobody could do, because nobody tried to optimize. So while you are very happy with it and say it's a very familiar term, optimization just meant doing it better than somebody else. And the whole concept of getting the optimum solution just didn't exist. So my introducing the whole idea of optimization in the early days was novel. IRV I understand that while programming the war effort in World War II was done on a vast scale, the term optimization as a word was never used. What was used instead? GEORGE A program can be thought of as a set of blocks, or activities, of different shapes that can to be fitted together according to certain rules, or mass balance constraints. Usually these can be combined in many different ways, some more, some less desirable than other combinations. Before linear programming and the simplex method were invented, it was not possible to computationally determine the best combination such as finding the program that maximizes the number of sorties flown. Instead, all kinds of ground rules were invented deemed by those in charge to be desirable characteristics for a program to have. Barnett/Ziegler/Byleen Finite Mathematics 12e

An Interview with George Dantzig (continued) A typical example of a ground rule that might have been used was: "Go ask General Arnold which alternative he prefers." A big program might contain hundreds of such highly subjective rules. And I said to myself: "Well, we can't work with all these rules." Because what it meant was that you set up a plan. Then you have so many rules that you have to get some resolution of these rules and statements of what they were. To do this, you had to be running to the general, and to his assistants and asking them all kinds of questions. IRV Name some of your most important early contributions. GEORGE The first was the recognition that most practical planning problems could be reformulated mathematically as finding a solution to a system of linear inequalities. My second contribution was recognizing that the plethora of ground rules could be eliminated and replaced by a general objective function to be optimized. My third contribution was the invention of the simplex method of solution. Barnett/Ziegler/Byleen Finite Mathematics 12e

An Interview with George Dantzig (continued) IRV And these were great ideas that worked and still do. GEORGE Yes, I was very lucky. IRV What would you say is the most invalid criticism of optimization? GEORGE Saying: "It's a waste of time to optimize because one does not really know what are the exact values of the input data for the program." IRV Ok, let's turn this around. What would you say is the greatest potential of optimization? GEORGE It has the potential to change the world. Barnett/Ziegler/Byleen Finite Mathematics 12e

Standard Maximization Problem in Standard Form A linear programming problem is said to be a standard maximization problem in standard form if its mathematical model is of the following form: Maximize P = c1x1 + c2x2 + … + cnxn subject to problem constraints of the form a1x1 + a2x2 + … + anxn < b, b > 0 with nonnegative constraints x1, x2, …, xn > 0 Barnett/Ziegler/Byleen Finite Mathematics 12e

Example We will use a modified form of a previous example. Consider the linear programming problem of maximizing z under the given constraints. This is a standard maximization problem. Barnett/Ziegler/Byleen Finite Mathematics 12e

Example (continued) Any two of them intersect in a point. There are a total of six such points. The coordinates of the point can be found by solving the system of two equations in two unknowns created by the equations of the two lines. Some of the points are corner points of the feasible region, and some are outside. There are four lines bordering the feasible region: Barnett/Ziegler/Byleen Finite Mathematics 12e

Example (continued) (0,0) feasible (0,15) (0,20) not feasible (7.5,12.5) feasible (optimal) (20,0) (45,0) grid spacing = 5 units Barnett/Ziegler/Byleen Finite Mathematics 12e

Slack Variables To use the simplex method, the constraint inequalities must be converted to equalities. Consider the two constraint inequalities To make this into a system of equations, we introduce slack variables They are called slack variables because they take up the slack between the left and right hand sides of the inequalities. Note that the slack variables must be nonnegative. Barnett/Ziegler/Byleen Finite Mathematics 12e

Slack Variables (continued) We now have two equations in four unknowns x, y, s1, s2 The system has an infinite number of solutions since there are more unknowns than equations. We can make the system have a unique solution by assigning two of the variables a value of zero and then solving for the remaining two variables. This is called a basic solution. We select any two of the four variables as basic variables. The remaining two variables automatically become non-basic variables. The non-basic variables are always assigned a value of zero. Then we solve the equations for the two basic variables. Barnett/Ziegler/Byleen Finite Mathematics 12e

Example (continued) The equations are Select x = 0 and y = 0 as the non-basic variables. Then the first equation reads 8(0) + 8(0) + s1 = 160, so s1 = 160. The second equation becomes 4(0) + 12(0) + s2 = 180, so s2 = 180. This corresponds to the point (x, y) = (0,0). According to the graph we saw earlier, this is a feasible point. The other 5 choices of non-basic variables are done similarly. The table on the next slide summarizes the results. x y s1 s2 point feasible? 160 180 (0,0) yes Barnett/Ziegler/Byleen Finite Mathematics 12e

Example (continued) Basic Solutions x y s1 s2 point feasible? 160 180 160 180 (0,0) yes 20 -60 (0,20) no 15 40 (0,15) 100 (20,0) 45 -200 (45,0) 7.5 12.5 (7.5,12.5) Barnett/Ziegler/Byleen Finite Mathematics 12e

Discovery! Each basic solution corresponds to an intersection point of the boundary lines of the feasible region. A feasible basic solution corresponds to a corner point (vertex) of the feasible region. This includes the optimum solution of the linear programming problem. A basic solution that is not feasible includes at least one negative value; a basic feasible solution does not include any negative values. We can determine the feasibility of a basic solution simply by examining the signs of all the variables in the solution. Barnett/Ziegler/Byleen Finite Mathematics 12e

Generalization In a linear programming problem with slack variables there will always be more variables than equations. Basic variables are selected arbitrarily (as many basic variables as there are equations). The remaining variables are called non-basic variables. We obtain a basic solution by assigning the non-basic variables a value of zero and solving for the basic variables. If a basic solution has no negative values, it is basic feasible solution. Theorem: If the optimal value of the objective function in a linear programming problem exists, then that value must occur at one (or more) of the basic feasible solutions. Barnett/Ziegler/Byleen Finite Mathematics 12e

Conclusion This is simply the first step in developing a procedure for solving a more complicated linear programming problem. But it is an important step in that we have been able to identify all the corner points (vertices) of the feasible set without a having three or more variables. Barnett/Ziegler/Byleen Finite Mathematics 12e