Antonio M. García-García Cavendish Laboratory, Cambridge University

Slides:



Advertisements
Similar presentations
Trapped ultracold atoms: Bosons Bose-Einstein condensation of a dilute bosonic gas Probe of superfluidity: vortices.
Advertisements

Theory of the pairbreaking superconductor-metal transition in nanowires Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Probing Superconductors using Point Contact Andreev Reflection Pratap Raychaudhuri Tata Institute of Fundamental Research Mumbai Collaborators: Gap anisotropy.
High T c Superconductors & QED 3 theory of the cuprates Tami Pereg-Barnea
Topological current effect on hQCD at finite density and magnetic field Pablo A. Morales Work in collaboration with Kenji Fukushima Based on Phys. Rev.
Hydrodynamic transport near quantum critical points and the AdS/CFT correspondence.
An excursion into modern superconductivity: from nanoscience to cold atoms and holography Yuzbashyan Rutgers Altshuler Columbia Urbina Regensburg Richter.
Phys. Rev. Lett. 100, (2008) Yuzbashyan Rutgers Altshuler Columbia Urbina Regensburg Richter Regensburg Sangita Bose, Tata, Max Planck Stuttgart.
Breakdown of the adiabatic approximation in low-dimensional gapless systems Anatoli Polkovnikov, Boston University Vladimir Gritsev Harvard University.
Chaos and interactions in nano-size metallic grains: the competition between superconductivity and ferromagnetism Yoram Alhassid (Yale) Introduction Universal.
Finite size effects in BCS: theory and experiments Antonio M. García-García Princeton and IST(Lisbon) Phys. Rev. Lett. 100, (2008)
Full counting statistics of incoherent multiple Andreev reflection Peter Samuelsson, Lund University, Sweden Sebastian Pilgram, ETH Zurich, Switzerland.
Anderson localization in BECs
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
Probing interacting systems of cold atoms using interference experiments Harvard-MIT CUA Vladimir Gritsev Harvard Adilet Imambekov Harvard Anton Burkov.
Research plans and outlook for the future Antonio M. García-García Lecturer.
Robustness of Topological Superconductivity in Proximity-Coupled Topological Insulator Nanoribbons Tudor D. Stanescu West Virginia University Collaborators:
Multifractal superconductivity Vladimir Kravtsov, ICTP (Trieste) Collaboration: Michael Feigelman (Landau Institute) Emilio Cuevas (University of Murcia)
Slow dynamics in gapless low-dimensional systems Anatoli Polkovnikov, Boston University AFOSR Vladimir Gritsev – Harvard Ehud Altman -Weizmann Eugene Demler.
A semiclassical, quantitative approach to the Anderson transition Antonio M. García-García Princeton University We study analytically.
A theory of finite size effects in BCS superconductors: The making of a paper Antonio M. García-García Princeton.
University of Trento INFM. BOSE-EINSTEIN CONDENSATION IN TRENTO SUPERFLUIDITY IN TRAPPED GASES University of Trento Inauguration meeting, Trento
Fluctuation conductivity of thin films and nanowires near a parallel-
Superglasses and the nature of disorder-induced SI transition
Dynamics of phase transitions in ion traps A. Retzker, A. Del Campo, M. Plenio, G. Morigi and G. De Chiara Quantum Engineering of States and Devices: Theory.
Benjamin Sacépé Institut Néel, CNRS & Université Joseph Fourier, Grenoble Localization of preformed Cooper-pairs in disordered superconductors Lorentz.
Lecture 3. Granular superconductors and Josephson Junction arrays Plan of the Lecture 1). Superconductivity in a single grain 2) Granular superconductors:
Holographic Superconductors from Gauss-Bonnet Gravity Rong-Gen Cai Institute of Theoretical Physics Chinese Academy of Sciences (May 7, 2012) 2012 海峡两岸粒子物理和宇宙学研讨会,
Two Level Systems and Kondo-like traps as possible sources of decoherence in superconducting qubits Lara Faoro and Lev Ioffe Rutgers University (USA)
PseudoGap Superconductivity and Superconductor-Insulator transition In collaboration with: Vladimir Kravtsov ICTP Trieste Emilio Cuevas University of Murcia.
Superconductivity Introduction Disorder & superconductivity : milestones BCS theory Anderson localization Abrikosov, Gorkov Anderson theorem
1 Disorder and Zeeman Field-driven superconductor-insulator transition Nandini Trivedi The Ohio State University “Exotic Insulating States of Matter”,
Topology induced emergent dynamic gauge theory in an extended Kane-Mele-Hubbard model Xi Luo January 5, 2015 arXiv:
R OLE OF D ISORDER IN S UPERCONDUCTING T RANSITION Sudhansu S. Mandal IACS, Kolkata HRI 1.
Sangita Bose, Bombay Antonio Bianconi, Rome Welcome !!! A. Garcia-Garcia, Cambridge.
How to enhance Tc in nano-structured materials
B. Sacépé, T. Dubouchet, C. Chapelier, M. Sanquer, CEA - Grenoble T. Baturina, Institute of semiconductor Physics - Novosibirsk V. Vinokur, Material Science.
Dirac fermions with zero effective mass in condensed matter: new perspectives Lara Benfatto* Centro Studi e Ricerche “Enrico Fermi” and University of Rome.
Hidden topological order in one-dimensional Bose Insulators Ehud Altman Department of Condensed Matter Physics The Weizmann Institute of Science With:
Rotating FFLO Superfluid in cold atom gases Niigata University, Youichi Yanase Tomohiro Yoshida 2012 Feb 13, GCOE シンポジウム「階層の連結」, Kyoto University.
“Granular metals and superconductors” M. V. Feigel’man (L.D.Landau Institute, Moscow) ICTS Condensed matter theory school, Mahabaleshwar, India, Dec.2009.
Dirac’s inspiration in the search for topological insulators
“Applied” String Theory Pinaki Banerjee The Institute of Mathematical Sciences, Chennai Department of Physics, Visva Bharati 12 th July, 2013.
Condensed matter physics and string theory HARVARD Talk online: sachdev.physics.harvard.edu.
Tunable excitons in gated graphene systems
Quantum Mechanical Models for Near Extremal Black Holes
Holographic Magnetism from General Relativity
‘Tc’ ~ 70 K: Fe-Based SC 200 Tc (K) year
Towards understanding the Quark-Gluon Plasma
Antonio M. García-García Cavendish Laboratory, Cambridge University
Toward a Holographic Model of d-wave Superconductors
ultracold atomic gases
A rotating hairy BH in AdS_3
Quantum Information and Everything.
Anderson localization of weakly interacting bosons
Electrical and thermal transport near quantum phase transitions in condensed matter, and in dyonic black holes Sean Hartnoll (KITP) Pavel.
dark matter Properties stable non-relativistic non-baryonic
Interplay of disorder and interactions
Interplay between disorder and interactions
Local Density Functional Theory for Superfluid Fermionic Systems
Color Superconductivity in dense quark matter
Zhejiang Normal University
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
One-Dimensional Bose Gases with N-Body Attractive Interactions
Atomic BEC in microtraps: Squeezing & visibility in interferometry
Analysis of proximity effects in S/N/F and F/S/F junctions
Chengfu Mu, Peking University
SOC Fermi Gas in 1D Optical Lattice —Exotic pairing states and Topological properties 中科院物理研究所 胡海平 Collaborators : Chen Cheng, Yucheng Wang, Hong-Gang.
New Possibilities in Transition-metal oxide Heterostructures
Presentation transcript:

Antonio M. García-García Cavendish Laboratory, Cambridge University Smaller is different and more: Low dimensional superconductivity for new physics and applications Antonio M. García-García Cavendish Laboratory, Cambridge University Cazalilla Tsinghua Mayoh Cambridge Endo Paris, ENS Paul Chesler Harvard Tezuka Kyoto Hong Liu MIT Bermudez Cambridge Pedro Ribeiro Lisbon Naidon RIKEN Lobos Maryland

Quantum critical points © Superconductivity For Happiness Trial and error Mavericks Quantum critical points © Cuprates ~100K 1986 Mueller & Bednorz MgB2 39K 2001 Akimitsu FeSC ~50K 2006 Hotsono

Control Pb ~7K Al ~1K Sn ~3.7K Nb ~9.3K Librarians Thinner Cleaner Smaller DFT BCS + (weak) disorder, interactions.. Thin films Josephson Junctions Control Nanowires

True Design of Materials! Mavericks meet Librarians A revolution is going on Experimental Control Theory does not drift True Design of Materials! Enhancement of superconductivity? Conventional SC in low dimensions Artificial hetero,nano-structures Novel Interfaces FeSe/STO, LAO/STO

Thin Films? Abeles, Cohen, Cullen, Phys. Rev. Lett., 17, 632 (1966) Crow, Parks, Douglass, Jensen, Giaver, Zeller.... A.M. Goldman, Dynes, Tinkham…

Blatt, Thompson, Phys. Lett. 5, 6 (1963) Thin Films >10Tc! Shape Resonances Fluctuations? Charge neutrality? Substrate? Blatt, Thompson, Phys. Lett. 5, 6 (1963) Yu, et al.,Rev. B 14, 996 (1976) Bermudez, AGG, Phys. Rev. B 89, 064508 (2014) 89, 024510 (2014)

(anti)Vortex unbinding Thinner Smoother Disordered BKT Transition 𝑅 𝑁 > 𝑅 𝑞 (anti)Vortex unbinding PRL 62 2180 (1989) PRB 47 5931 (1993) A.M. Goldman et al.

Size effects but not higher Tc 2000 Atomic scale control Pb Shih et al., Science 324, 1314 (2009) Xue et al., Science 306, 1915 (2004) Size effects but not higher Tc

Epitaxial growth STM Xue Tsinghua Impurities?

Control Tunability LaAlO3 /SrTiO3 interface Localization Triscone et al. , Nature 456 624 (2008) Mannhart et al., Nature 502, 528 (2013) Localization Exotic Quantum Matter Topology Control Tunability

Cuprates high Tc Heterostructures Bozovic et al., Nature 455, 782 (2008) Higher Tc!!

Iron Based Heterostructures Nature Comm. 3, 931 (2013), Chinese Phys. Lett. 29 037402 (2012) Feng, et. al, Nat. Commun. 5:5044 (2014)

Bulk FeSe 8K!

STO is key!

Nano-grains

Single grains? Abeles, Cohen, Cullen, Phys. Rev. Lett., 17, 632 (1966) Crow, Parks, Douglass, Jensen, Giaver, Zeller.... A.M. Goldman, Dynes, Tinkham…

Yes, superconductivity  ~  Ralph, Black,Tinkham, Superconductivity in Single Metal Particles PRL 74, 3241-3244 (1995). Superconductivity? 1959 Yes, superconductivity Isolated grain? Odd-even effects Rediscovery of Richardson’s equations No yet quantitative

0 nm 7 nm

BCS superconductivity Finite size effects V   Δ~ De-1/ V finite Δ=? Level Degeneracy Shell Effects L ~ 5nm Parmenter, Phys. Rev. 166, 392 (1967) 20Tc!

 >>  Grains Heiselberg (2002): harmonic potentials, cold atom Kresin, Ovchinnikov, Boyaci (2007) : Spherical, too high Tc Peeters, et al, (2005-): BCS, BdG in a wire, cylinder.. Devreese (2006): Richardson equations in a box Olofsson (2008): Estimation of fluctuations in BCS

 >>  L ~ 10nm Expansion in 1/kFL, /∆0 AGG, Altshuler, PRL 100, 187001 (2008) AGG, Altshuler, PRB 83, 014510 (2011)

STM Single, Isolated Sn and Pb grains R ~ 4-30nm Kern Bose R ~ 4-30nm A gap is still observed Almost hemispherical STM Tunneling conductance

Bose, AGG, Nature Materials 2010 + Bose, AGG, Nature Materials 2010

Beyond mean field  ~  Quantum Fluctuations Richardson’s equations and Thermal Fluctuations Static Path Approach Brihuega, AGG, Ribeiro, Bose, Kern PRB 84,104525 (2011) Editor‘s Suggestion

Ribeiro and AGG, Phys. Rev. Lett. 108, 097004 (2012) Quantum + Thermal? T, / Δ0 << 1 Divergences at intermediate T Rossignoli and Canosa Ann. of Phys. 275, 1, (1999) Harmful Zero Modes Polar coordinates Quantum fluctuations ~ Charging effects Ribeiro and AGG, Phys. Rev. Lett. 108, 097004 (2012)

No Maybe True phase coherence in single nanograins? Josephson array? 𝚫𝑵𝚫𝝓≥ℏ Josephson array? Maybe Mason, et al, Nature Physics 8 59 (2012)

Engineering inhomogeneous materials James Mayoh Engineering inhomogeneous materials Inhomogeneous JJ arrays Experimentally feasible 𝐿∼5𝑛𝑚 𝜎∼1𝑛𝑚 3D nano-spheres Charging effects Global Tc > Bulk Tc? Topology, Matthews, Ribeiro, and AGG, PRL 112, 247001(2014) Nano-granularity Mayoh, AGG. PRB 90, 134513 (2014) Disorder, Mayoh, AGG, 1412.0029 PRX (?)

Δ 𝜖,𝑟,𝐿 Percolation ? 3D Array T 1 Nano-Grain + Tunnelling Hopping M G E U S 3D Array Schoen, Zaikin, Fazio Charging Hopping Quasiparticles H O M G E N U S T #SCG Percolation ?

Percolation? Phase fluctuations? T #SCgrains Tc? R=5nm =1nm =0.3

Packing = FCC, BCC, Cubic Patent 𝜎=1 𝑛𝑚 𝑅 =5 𝑛𝑚 𝜆=0.25 Enhancement! Mark Blamire Cambridge

SURPRISE!

Engineering FeSe/STO Interface design Nano-granularity Xue Tsinghua Lara Benfatto Rome Xue et.al PRB B91 060509(R) (2015)

Inhomogeneities by disorder Energy gap Order parameter Δ(𝑟) Global Tc Can disorder enhance superconductivity?

𝒖 𝒏 , 𝒗 𝒏 ∝ 𝝍 𝒏 Some bad news BdG too difficult BCS doable but valid only if

Disorder and superconductivity Anderson Theorem Gorkov, Anderson 50’s (Do not worry about disorder) Localization and SC can coexist Ma & Lee 80’s Weak localization weakens SC Maekawa, Finkelstein 80’s Numerical BdG Trivedi et al., Meir 90’s Emergent granularity Pseudogap, Goldstone, Higgs modes, gap distribution function Sacepe, Benfatto, Raychaudhuri Multifractal disorder Kravtsov, Mirlin

Enhancement of Tc by disorder Fractal distributions of dopants enhance Tc in cuprates Bianconi, et al., Nature 466, 841 (2010) Inhomogeneities Higher Tc  PRL 108, 017002 (2012) PRL, 98, 027001 (2007)

Strong multifractality and superconductivity Feigelman, Ioffe, Kravtsov, Yuzbashyan, Phys. Rev. Lett. 98, 027001 (2007) I. S. Burmistrov, I. V. Gornyi, A. D. Mirlin, Phys. Rev. Lett. 108, 017002 (2012) 3d MIT ~ 0.4 T c ≥1000K

Weak multifractality and superconductivity J. Mayoh and AGG, PRB 92 174526 (2015) Where? What? (Ultra) Thin films Δ( 𝜖 𝐹 ) energy gap 2D + Spin orbit Δ 𝜖 energy dependence 1D + Long Range Δ(𝑟) spatial distribution How? Global Tc! 𝜆,𝛾≪1 Can disorder enhance SC? 𝐵𝐶𝑆, 𝜖 𝐷 𝑓𝑖𝑥𝑒𝑑 Percolation

Δ 𝜖 𝐹 = Δ γ 𝐹𝑖𝑥𝑒𝑑 𝜆 𝐹𝑖𝑥𝑒𝑑 𝜖 𝐷 / 𝐸 0 Still unrealistic Why? Not true Tc Δ 𝜖 𝐹 = Δ γ 𝐹𝑖𝑥𝑒𝑑 𝜆 𝐹𝑖𝑥𝑒𝑑 𝜖 𝐷 / 𝐸 0 Still unrealistic Why? Not true Tc Inhomogenous SC

Log-Normal distribution 𝛾∼1/𝑔 Global Tc? Log-Normal distribution Sacepe et al., Nat. Phys. 7 239 (2011) Lemarie, Benfatto, et al., PRB 87, 184509 (2013) Tracy-Widom?

𝜆≤0.3 Global Tc? 𝜙~ 𝜙 𝑐 Yes But Al is fine! FeSe/STO? Enhancement? 𝜆=0.25 𝜙~ 𝜙 𝑐 𝜙 𝑐 =0.675,0.7,0.75,0.8 Enhancement? 𝜆≤0.3 Yes But Al is fine! FeSe/STO?

Out of equilibrium superconductivity

The out of equilibrium birth of a superfluid Phys. Rev. X 5, 021015 (2015) 𝜉 𝑒𝑞 = 𝜉 0 𝜖 −𝜈 Hong Liu MIT Paul Chesler Harvard 𝜏 𝑒𝑞 = 𝜏 0 𝜖 −𝜈𝑧 Unbroken Phase Broken phase 〈𝜓〉=0 Tc 𝜓 ≠0 T(t) 𝜓 =Δ 𝑥,𝑡 𝑒 𝑖𝜃 𝑥,𝑡 ?

Kibble J. Phys. A: Math. Gen. 9: 1387. (1976) Causality Vortices in the sky Generation of Structure Cosmic strings Krusius, 2006 Weyler, Nature 2008

Kibble-Zurek mechanism t 𝜏 𝑒𝑞 𝑡 ∝ 𝜖 −𝜈𝑧 Adiabatic Frozen 𝜏 𝑒𝑞 𝑡 ∼ 𝑡 − 𝑡 𝑡 1− 𝑇 𝑡 𝑇 𝑐 =𝜖 𝑡 =𝑡/ 𝜏 𝑄 Zurek Nature 317 (1985) 505 Tc 𝜉 = 𝜉 0 𝜖 −𝜈 = 𝜉 0 𝜏 𝑄 𝜏 0 𝜈/(1+𝜈𝑧) Kibble-Zurek mechanism 𝜌∼ 𝜉 −𝑑 ∼ 𝜏 𝑄 −𝑑𝑣/(1+𝑣𝑧)

KZ scaling with the quench speed Too few defects

𝒕 𝒆𝒒 >𝑡> 𝑡 𝑓𝑟𝑒𝑒𝑧𝑒 is relevant Issues with KZ Too many defects Adiabatic at tfreeze? Defects without a condensate? 𝒕 𝒆𝒒 >𝑡> 𝑡 𝑓𝑟𝑒𝑒𝑧𝑒 is relevant Phys. Rev. X 5, 021015 (2015) Chesler, AGG, Liu

𝜌 𝑡 𝑒𝑞 ∼ log 𝑅 𝛾 𝜌 𝐾𝑍 𝜓 2 𝑡 ∝ 𝑒 𝑎 2 𝑡 1+𝑧𝜈 Slow Quenches Linear response 𝐭> 𝐭 𝐟𝐫𝐞𝐞𝐳𝐞 Scaling KZ Frozen Adiabatic US Frozen Coarsening Adiabatic 𝑡 𝑒𝑞 𝑡 𝑓𝑟𝑒𝑒𝑧𝑒 𝑡 𝑒𝑞 𝑡 𝑓𝑟𝑒𝑒𝑧𝑒 ∼ log 𝑅 1 1+𝜈𝑧 𝜌 𝑡 𝑒𝑞 ∼ log 𝑅 𝛾 𝜌 𝐾𝑍 𝑅∼ 𝜉 −1 𝜏 𝑄 Λ 1+𝜈𝑧 𝛾= 1+ 𝑧−2 𝜈 2(1+𝑧𝜈) 𝜓 2 𝑡 ∝ 𝑒 𝑎 2 𝑡 1+𝑧𝜈 Λ= 𝑑−𝑧 𝜈−2𝛽

teq is the relevant scale Numerics U(1) theory with a gravity dual teq is the relevant scale

Slow quenches Adiabatic Non adiabatic

Slow Fast ~25 times less defects than KZ prediction!! Fast Slow 𝜌∼ 𝜌 𝐾𝑍 𝑙𝑜𝑔 (𝑁 2 𝜏 𝑄 1/2 ) 1/2 Slow Fast 𝜌∼ 𝜖 𝑓 log⁡( 𝑁 2 𝜖 𝑓 ) 𝜖 𝑓 =1− 𝑇 𝑓 / 𝑇 𝑐 ~25 times less defects than KZ prediction!! Relevant for 4He, materials ?

Materials nano-design Interfaces Heterostructures Thermalization, steady non-thermal, dynamical transitions Out of equilibrium Quantum Information Bounds on transport “Universal quantum constraints on the butterfly effect” D. Berenstein, AGG, 1510.08870 Emergent quantum matter Many-body Efimov in condensed matter, topology

THANKS! 感谢您的关注

Numerics Experiments Anderson theorem Weak localization Can disorder enhance superconductivity? Numerics Trivedi, Meir….. Experiments Pratap, Sacepe….. Strong coupling and disorder Strong disorder and no weak coupling AGG,Tezuka, 2011 Abeles,… 60’s Gor'kov and Abrikosov Finkelstein A M, 1987 Anderson theorem Weak localization Anderson, J. Phys. Chem. Solids 11, 26 (1959) Maekawa S, Fukuyama H, 1982 Anderson theorem is all but a theorem Be careful with BCS+Perturbation

Many body Efimov Physics Bound states Efimov 70’s Scaling

RGM Born-Oppenheimer

& AdS/CFT Maldacena1997 2003 2008 2012 QCD Quark gluon plasma Strongly coupled field theory in d Weakly coupled gravity in d+1 N=4 Super-Yang Mills CFT Anti de Sitter space AdS QCD Quark gluon plasma Holographic superconductivity 2003 2008 2012 Quantum criticality, non-equilibrium.. Easy to compute in the gravity dual Detailed dictionary &

Anderson Metal-Insulator Transitions Multifractal eigenstates Wegner, Aoki, Castellani, Efetov

Experimental tests Disorder L ~ 5-10nm? FeSe? Enhancement? STM in thin films log2 distribution Disorder Transport to test higher global Tc Nano engineering L ~ 5-10nm? Conclusion FeSe? Enhancement? Only in boring materials? Sure MgB2?