N.B.: This lecture uses a left-recursive version of the SheepNoise grammar. The book uses a right-recursive version. The derivations (& the tables) are.

Slides:



Advertisements
Similar presentations
Parsing V: Bottom-up Parsing
Advertisements

Parsing Wrap Up Comp 412 Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit.
1 CMPSC 160 Translation of Programming Languages Fall 2002 slides derived from Tevfik Bultan, Keith Cooper, and Linda Torczon Lecture-Module #10 Parsing.
Parsing VI The LR(1) Table Construction. LR(k) items The LR(1) table construction algorithm uses LR(1) items to represent valid configurations of an LR(1)
Parsing VII The Last Parsing Lecture Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at.
Parsing V Introduction to LR(1) Parsers. from Cooper & Torczon2 LR(1) Parsers LR(1) parsers are table-driven, shift-reduce parsers that use a limited.
Parsing — Part II (Ambiguity, Top-down parsing, Left-recursion Removal)
1 LR parsing techniques SLR (not in the book) –Simple LR parsing –Easy to implement, not strong enough –Uses LR(0) items Canonical LR –Larger parser but.
Table-driven parsing Parsing performed by a finite state machine. Parsing algorithm is language-independent. FSM driven by table (s) generated automatically.
1 CIS 461 Compiler Design & Construction Fall 2012 slides derived from Tevfik Bultan, Keith Cooper, and Linda Torczon Lecture-Module #12 Parsing 4.
Parsing Wrap-up. from Cooper and Torczon2 Filling in the A CTION and G OTO Tables The algorithm Many items generate no table entry  Closure( ) instantiates.
Bottom-up parsing Goal of parser : build a derivation
Parsing IV Bottom-up Parsing Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University.
Parsing IV Bottom-up Parsing. Parsing Techniques Top-down parsers (LL(1), recursive descent) Start at the root of the parse tree and grow toward leaves.
LR(1) Parsers Comp 412 Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit.
Introduction to Parsing Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University.
Profs. Necula CS 164 Lecture Top-Down Parsing ICOM 4036 Lecture 5.
Top Down Parsing - Part I Comp 412 Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University.
Bottom-up Parsing, Part I Comp 412 Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University.
Parsing — Part II (Top-down parsing, left-recursion removal) Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved. Students.
Parsing — Part II (Top-down parsing, left-recursion removal) Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved. Students.
Parsing V LR(1) Parsers C OMP 412 Rice University Houston, Texas Fall 2001 Copyright 2000, Keith D. Cooper, Ken Kennedy, & Linda Torczon, all rights reserved.
Top-down Parsing Recursive Descent & LL(1) Comp 412 Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved. Students enrolled in Comp 412.
Top-Down Parsing CS 671 January 29, CS 671 – Spring Where Are We? Source code: if (b==0) a = “Hi”; Token Stream: if (b == 0) a = “Hi”; Abstract.
Top-Down Parsing.
Parsing VII The Last Parsing Lecture. High-level overview  Build the canonical collection of sets of LR(1) Items, I aBegin in an appropriate state, s.
Parsing V LR(1) Parsers N.B.: This lecture uses a left-recursive version of the SheepNoise grammar. The book uses a right-recursive version. The derivations.
Parsing V LR(1) Parsers. LR(1) Parsers LR(1) parsers are table-driven, shift-reduce parsers that use a limited right context (1 token) for handle recognition.
1 Syntax Analysis Part II Chapter 4 COP5621 Compiler Construction Copyright Robert van Engelen, Florida State University, 2007.
Compilers: Bottom-up/6 1 Compiler Structures Objective – –describe bottom-up (LR) parsing using shift- reduce and parse tables – –explain how LR.
Introduction to Parsing
Parsing — Part II (Top-down parsing, left-recursion removal)
Parsing III (Top-down parsing: recursive descent & LL(1) )
Programming Languages Translator
Lexical and Syntax Analysis
LR(1) Parsers Comp 412 COMP 412 FALL 2010
Parsing IV Bottom-up Parsing
Table-driven parsing Parsing performed by a finite state machine.
Compiler Construction
Parsing VI The LR(1) Table Construction
LALR Parsing Canonical sets of LR(1) items
Syntax Analysis Part II
4 (c) parsing.
Implementing a LR parser engine
Parsing Techniques.
Subject Name:COMPILER DESIGN Subject Code:10CS63
Lexical and Syntax Analysis
Top-Down Parsing CS 671 January 29, 2008.
Lexical Analysis — Part II: Constructing a Scanner from Regular Expressions Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.
4d Bottom Up Parsing.
Parsing VII The Last Parsing Lecture
Lecture 9: Bottom-Up Parsing
Parsing #2 Leonidas Fegaras.
Lecture 8 Bottom Up Parsing
Lexical Analysis — Part II: Constructing a Scanner from Regular Expressions Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.
Parsing IV Bottom-up Parsing
Introduction to Parsing
Automating Scanner Construction
Lexical Analysis — Part II: Constructing a Scanner from Regular Expressions Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.
Introduction to Parsing
Parsing #2 Leonidas Fegaras.
Parsing — Part II (Top-down parsing, left-recursion removal)
4d Bottom Up Parsing.
Kanat Bolazar February 16, 2010
4d Bottom Up Parsing.
4d Bottom Up Parsing.
4d Bottom Up Parsing.
Lecture 11 LR Parse Table Construction
Lecture 11 LR Parse Table Construction
Presentation transcript:

N.B.: This lecture uses a left-recursive version of the SheepNoise grammar. The book uses a right-recursive version. The derivations (& the tables) are different. Parsing V LR(1) Parsers Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit permission to make copies of these materials for their personal use.

S  0  1  2  …  n–1  n  sentence LR(1) Parsers LR(1) parsers are table-driven, shift-reduce parsers that use a limited right context (1 token) for handle recognition LR(1) parsers recognize languages that have an LR(1) grammar Informal definition: A grammar is LR(1) if, given a rightmost derivation S  0  1  2  …  n–1  n  sentence We can 1. isolate the handle of each right-sentential form i, and 2. determine the production by which to reduce, by scanning i from left-to-right, going at most 1 symbol beyond the right end of the handle of i

A table-driven LR(1) parser looks like Tables can be built by hand LR(1) Parsers A table-driven LR(1) parser looks like Tables can be built by hand However, this is a perfect task to automate Scanner Table-driven Parser ACTION & GOTO Tables Generator source code grammar IR

LR(1) Skeleton Parser The skeleton parser uses ACTION & GOTO tables stack.push(INVALID); stack.push(s0); not_found = true; token = scanner.next_token(); do while (not_found) { s = stack.top(); if ( ACTION[s,token] == “reduce A” ) then { stack.popnum(2*||); // pop 2*|| symbols stack.push(A); stack.push(GOTO[s,A]); } else if ( ACTION[s,token] == “shift si” ) then { stack.push(token); stack.push(si); token  scanner.next_token(); else if ( ACTION[s,token] == “accept” & token == EOF ) then not_found = false; else report a syntax error and recover; report success; The skeleton parser uses ACTION & GOTO tables does |words| shifts does |derivation| reductions does 1 accept detects errors by failure of 3 other cases

LR(1) Parsers (parse tables) To make a parser for L(G), need a set of tables The grammar The tables Remember, this is the left-recursive SheepNoise; EaC shows the right-recursive version.

Example Parse 1 The string “baa”

Example Parse 1 The string “baa”

Example Parse 1 The string “baa”

Example Parse 1 The string “baa”

Example Parse 2 The string “baa baa ”

Example Parse 2 The string “baa baa ”

Example Parse 2 The string “baa baa ”

Example Parse 2 The string “baa baa ”

LR(1) Parsers How does this LR(1) stuff work? Unambiguous grammar  unique rightmost derivation Keep upper fringe on a stack All active handles include top of stack (TOS) Shift inputs until TOS is right end of a handle Language of handles is regular (finite) Build a handle-recognizing DFA ACTION & GOTO tables encode the DFA To match subterm, invoke subterm DFA & leave old DFA’s state on stack Final state in DFA  a reduce action New state is GOTO[state at TOS (after pop), lhs] For SN, this takes the DFA to s1 S0 S3 S2 S1 baa SN Control DFA for SN Reduce action

Building LR(1) Parsers How do we generate the ACTION and GOTO tables? Use the grammar to build a model of the DFA Use the model to build ACTION & GOTO tables If construction succeeds, the grammar is LR(1) The Big Picture Model the state of the parser Use two functions goto( s, X ) and closure( s ) goto() is analogous to move() in the subset construction closure() adds information to round out a state Build up the states and transition functions of the DFA Use this information to fill in the ACTION and GOTO tables Terminal or non-terminal

The LR(1) table construction algorithm uses LR(1) items to LR(k) items The LR(1) table construction algorithm uses LR(1) items to represent valid configurations of an LR(1) parser An LR(k) item is a pair [P, ], where P is a production A with a • at some position in the rhs  is a lookahead string of length ≤ k (words or EOF) The • in an item indicates the position of the top of the stack [A•,a] means that the input seen so far is consistent with the use of A  immediately after the symbol on top of the stack [A •,a] means that the input sees so far is consistent with the use of A  at this point in the parse, and that the parser has already recognized . [A •,a] means that the parser has seen , and that a lookahead symbol of a is consistent with reducing to A.

The production A, where  = B1B1B1 with lookahead a, LR(1) Items The production A, where  = B1B1B1 with lookahead a, can give rise to 4 items [A•B1B2B3,a], [AB1•B2B3,a], [AB1B2•B3,a], & [AB1B2B3•,a] The set of LR(1) items for a grammar is finite What’s the point of all these lookahead symbols? Carry them along to choose the correct reduction, if there is a choice Lookaheads are bookkeeping, unless item has • at right end Has no direct use in [A•,a] In [A•,a], a lookahead of a implies a reduction by A  For { [A•,a],[B•,b] }, a  reduce to A; FIRST()  shift Limited right context is enough to pick the actions

LR(1) Table Construction High-level overview Build the canonical collection of sets of LR(1) Items, I Begin in an appropriate state, s0 [S’ •S,EOF], along with any equivalent items Derive equivalent items as closure( s0 ) Repeatedly compute, for each sk, and each X, goto(sk,X) If the set is not already in the collection, add it Record all the transitions created by goto( ) This eventually reaches a fixed point Fill in the table from the collection of sets of LR(1) items The canonical collection completely encodes the transition diagram for the handle-finding DFA

Back to Finding Handles Revisiting an issue from last class Parser in a state where the stack (the fringe) was Expr – Term With lookahead of * How did it choose to expand Term rather than reduce to Expr? Lookahead symbol is the key With lookahead of + or –, parser should reduce to Expr With lookahead of * or /, parser should shift Parser uses lookahead to decide All this context from the grammar is encoded in the handle recognizing mechanism

Remember this slide from last lecture? Back to x – 2 * y shift here reduce here 1. Shift until TOS is the right end of a handle 2. Find the left end of the handle & reduce

Computing FIRST Sets Define FIRST as If  * a, a  T,   (T  NT)*, then a  FIRST() If  * , then   FIRST() Note: if  = X, FIRST() = FIRST(X) To compute FIRST Use a fixed-point method FIRST(A)  2(T  ) Loop is monotonic Algorithm halts Computation of FIRST uses FOLLOW, so build FOLLOW sets before FIRST sets

Computing FOLLOW Sets For SheepNoise: FOLLOW(Goal ) = { EOF } FOLLOW(S)  {EOF } for each A  NT, FOLLOW(A)  Ø while (FOLLOW sets are still changing) for each p  P, of the form A12 … k FOLLOW(k)  FOLLOW(k)  FOLLOW(A) TRAILER  FOLLOW(A) for i  k down to 2 if   FIRST( i ) then FOLLOW(i-1 )  FOLLOW(i-1)  { FIRST(i ) – {  } }  TRAILER else FOLLOW(i-1 )  FOLLOW(i-1)  FIRST(i ) TRAILER  Ø For SheepNoise: FOLLOW(Goal ) = { EOF } FOLLOW(SN) = { baa, EOF }

Computing FIRST Sets For SheepNoise: on G  SN on SN  baa for each x  T, FIRST(x)  { x } for each A  NT, FIRST(A)  Ø while (FIRST sets are still changing) for each p  P, of the form A, if  is  then FIRST(A)  FIRST(A)  {  } else if  is B1B2…Bk then begin FIRST(A)  FIRST(A)  ( FIRST(B1) – {  } ) for i  1 to k–1 by 1 while   FIRST(Bi ) FIRST(A)  FIRST(A)  ( FIRST(Bi +1) – {  } ) if i = k–1 and   FIRST(Bk ) then FIRST(A)  FIRST(A)  {  } end for each A  NT if   FIRST(A) then FIRST(A)  FIRST(A)  FOLLOW(A) on SN  baa on G  SN For SheepNoise: FIRST(Goal) = { baa } FIRST(SN ) = { baa } FIRST(baa) = { baa }

Closure “fills out” a state Computing Closures Closure(s) adds all the items implied by items already in s Any item [AB,a] implies [B,x] for each production with B on the lhs, and each x  FIRST(a) Since B is valid, any way to derive B is valid, too The algorithm Closure( s ) while ( s is still changing )  items [A   •B,a]  s  productions B    P  b  FIRST(a) //  might be  if [B • ,b]  s then add [B • ,b] to s Classic fixed-point method Halts because s  ITEMS Worklist version is faster Closure “fills out” a state

Example From SheepNoise Initial step builds the item [Goal•SheepNoise,EOF] and takes its closure( ) Closure( [Goal•SheepNoise,EOF] ) So, S0 is { [Goal • SheepNoise,EOF], [SheepNoise • SheepNoise baa,EOF], [SheepNoise• baa,EOF], [SheepNoise • SheepNoise baa,baa], [SheepNoise • baa,baa] } Remember, this is the left-recursive SheepNoise; EaC shows the right-recursive version.

Computing Gotos Goto(s,x) computes the state that the parser would reach if it recognized an x while in state s Goto( { [AX,a] }, X ) produces [AX,a] (obviously) It also includes closure( [AX,a] ) to fill out the state The algorithm Goto( s, X ) new Ø  items [A•X,a]  s new  new  [AX•,a] return closure(new) Not a fixed-point method! Straightforward computation Uses closure ( ) Goto() moves forward

Example from SheepNoise S0 is { [Goal • SheepNoise,EOF], [SheepNoise • SheepNoise baa,EOF], [SheepNoise • baa,EOF], [SheepNoise • SheepNoise baa,baa], [SheepNoise • baa,baa] } Goto( S0 , baa ) Loop produces Closure adds nothing since • is at end of rhs in each item In the construction, this produces s2 { [SheepNoisebaa •, {EOF,baa}]} New, but obvious, notation for two distinct items [SheepNoisebaa •, EOF] & [SheepNoisebaa •, baa]

Example from SheepNoise S0 : { [Goal • SheepNoise, EOF], [SheepNoise • SheepNoise baa, EOF], [SheepNoise• baa, EOF], [SheepNoise • SheepNoise baa, baa], [SheepNoise • baa, baa] } S1 = Goto(S0 , SheepNoise) = { [Goal SheepNoise •, EOF], [SheepNoise SheepNoise • baa, EOF], [SheepNoise SheepNoise • baa, baa] } S2 = Goto(S0 , baa) = { [SheepNoise baa •, EOF], [SheepNoise baa •, baa] } S3 = Goto(S1 , baa) = { [SheepNoise SheepNoise baa •, EOF], [SheepNoise SheepNoise baa •, baa] }

Building the Canonical Collection Start from s0 = closure( [S’S,EOF ] ) Repeatedly construct new states, until all are found The algorithm s0  closure ( [S’S,EOF] ) S  { s0 } k  1 while ( S is still changing )  sj  S and  x  ( T  NT ) sk  goto(sj,x) record sj  sk on x if sk  S then S  S  sk k  k + 1 Fixed-point computation Loop adds to S S  2ITEMS, so S is finite Worklist version is faster

Example from SheepNoise Starts with S0 S0 : { [Goal • SheepNoise, EOF], [SheepNoise • SheepNoise baa, EOF], [SheepNoise• baa, EOF], [SheepNoise • SheepNoise baa, baa], [SheepNoise • baa, baa] }

Example from SheepNoise Starts with S0 S0 : { [Goal • SheepNoise, EOF], [SheepNoise • SheepNoise baa, EOF], [SheepNoise• baa, EOF], [SheepNoise • SheepNoise baa, baa], [SheepNoise • baa, baa] } Iteration 1 computes S1 = Goto(S0 , SheepNoise) = { [Goal SheepNoise •, EOF], [SheepNoise SheepNoise • baa, EOF], [SheepNoise SheepNoise • baa, baa] } S2 = Goto(S0 , baa) = { [SheepNoise baa •, EOF], [SheepNoise baa •, baa] }

Example from SheepNoise Starts with S0 S0 : { [Goal • SheepNoise, EOF], [SheepNoise • SheepNoise baa, EOF], [SheepNoise• baa, EOF], [SheepNoise • SheepNoise baa, baa], [SheepNoise • baa, baa] } Iteration 1 computes S1 = Goto(S0 , SheepNoise) = { [Goal SheepNoise •, EOF], [SheepNoise SheepNoise • baa, EOF], [SheepNoise SheepNoise • baa, baa] } S2 = Goto(S0 , baa) = { [SheepNoise baa •, EOF], [SheepNoise baa •, baa] } Iteration 2 computes S3 = Goto(S1 , baa) = { [SheepNoise SheepNoise baa •, EOF], [SheepNoise SheepNoise baa •, baa] }

Example from SheepNoise Starts with S0 S0 : { [Goal • SheepNoise, EOF], [SheepNoise • SheepNoise baa, EOF], [SheepNoise• baa, EOF], [SheepNoise • SheepNoise baa, baa], [SheepNoise • baa, baa] } Iteration 1 computes S1 = Goto(S0 , SheepNoise) = { [Goal SheepNoise •, EOF], [SheepNoise SheepNoise • baa, EOF], [SheepNoise SheepNoise • baa, baa] } S2 = Goto(S0 , baa) = { [SheepNoise baa •, EOF], [SheepNoise baa •, baa] } Iteration 2 computes S3 = Goto(S1 , baa) = { [SheepNoise SheepNoise baa •, EOF], [SheepNoise SheepNoise baa •, baa] } Nothing more to compute, since • is at the end of every item in S3 .

Extra Slides Start Here

Example (grammar & sets) Simplified, right recursive expression grammar Goal  Expr Expr  Term – Expr Expr  Term Term  Factor * Term Term  Factor Factor  ident

Example (building the collection) Initialization Step s0  closure( { [Goal  •Expr , EOF] } ) { [Goal  • Expr , EOF], [Expr  • Term – Expr , EOF], [Expr  • Term , EOF], [Term  • Factor * Term , EOF], [Term  • Factor * Term , –], [Term  • Factor , EOF], [Term  • Factor , –], [Factor  • ident , EOF], [Factor  • ident , –], [Factor  • ident , *] } S  {s0 }

Example (building the collection) Iteration 1 s1  goto(s0 , Expr) s2  goto(s0 , Term) s3  goto(s0 , Factor) s4  goto(s0 , ident ) Iteration 2 s5  goto(s2 , – ) s6  goto(s3 , * ) Iteration 3 s7  goto(s5 , Expr ) s8  goto(s6 , Term )

Example (Summary) S0 : { [Goal  • Expr , EOF], [Expr  • Term – Expr , EOF], [Expr  • Term , EOF], [Term  • Factor * Term , EOF], [Term  • Factor * Term , –], [Term  • Factor , EOF], [Term  • Factor , –], [Factor  • ident , EOF], [Factor  • ident , –], [Factor • ident, *] } S1 : { [Goal  Expr •, EOF] } S2 : { [Expr  Term • – Expr , EOF], [Expr  Term •, EOF] } S3 : { [Term  Factor • * Term , EOF],[Term  Factor • * Term , –], [Term  Factor •, EOF], [Term  Factor •, –] } S4 : { [Factor  ident •, EOF],[Factor  ident •, –], [Factor  ident •, *] } S5 : { [Expr  Term – • Expr , EOF], [Expr  • Term – Expr , EOF], [Expr  • Term , EOF], [Term  • Factor * Term , –], [Term  • Factor , –], [Term  • Factor * Term , EOF], [Term  • Factor , EOF], [Factor  • ident , *], [Factor  • ident , –], [Factor  • ident , EOF] }

Example (Summary) S6 : { [Term  Factor * • Term , EOF], [Term  Factor * • Term , –],  [Term  • Factor * Term , EOF], [Term  • Factor * Term , –], [Term  • Factor , EOF], [Term  • Factor , –], [Factor  • ident , EOF], [Factor  • ident , –], [Factor  • ident , *] } S7: { [Expr  Term – Expr •, EOF] } S8 : { [Term  Factor * Term •, EOF], [Term  Factor * Term •, –] }

Example (Summary) The Goto Relationship (from the construction)

Filling in the ACTION and GOTO Tables The algorithm Many items generate no table entry Closure( ) instantiates FIRST(X) directly for [A•X,a ]  set sx  S  item i  sx if i is [A •ad,b] and goto(sx,a) = sk , a  T then ACTION[x,a]  “shift k” else if i is [S’S •,EOF] then ACTION[x ,a]  “accept” else if i is [A •,a] then ACTION[x,a]  “reduce A”  n  NT if goto(sx ,n) = sk then GOTO[x,n]  k x is the state number

Example (Filling in the tables) The algorithm produces the following table

In either case, the grammar is not LR(1) What can go wrong? What if set s contains [A•a,b] and [B•,a] ? First item generates “shift”, second generates “reduce” Both define ACTION[s,a] — cannot do both actions This is a fundamental ambiguity, called a shift/reduce error Modify the grammar to eliminate it (if-then-else) Shifting will often resolve it correctly What is set s contains [A•, a] and [B•, a] ? Each generates “reduce”, but with a different production Both define ACTION[s,a] — cannot do both reductions This is a fundamental ambiguity, called a reduce/reduce conflict Modify the grammar to eliminate it (PL/I’s overloading of (...)) In either case, the grammar is not LR(1)

Shrinking the Tables Three options: Combine terminals such as number & identifier, + & -, * & / Directly removes a column, may remove a row For expression grammar, 198 (vs. 384) table entries Combine rows or columns Implement identical rows once & remap states Requires extra indirection on each lookup Use separate mapping for ACTION & for GOTO Use another construction algorithm Both LALR(1) and SLR(1) produce smaller tables Implementations are readily available

LR(k) versus LL(k) (Top-down Recursive Descent ) Finding Reductions LR(k)  Each reduction in the parse is detectable with the complete left context, the reducible phrase, itself, and the k terminal symbols to its right LL(k)  Parser must select the reduction based on The complete left context The next k terminals Thus, LR(k) examines more context “… in practice, programming languages do not actually seem to fall in the gap between LL(1) languages and deterministic languages” J.J. Horning, “LR Grammars and Analysers”, in Compiler Construction, An Advanced Course, Springer-Verlag, 1976

Summary Advantages Fast Good locality Simplicity Good error detection Deterministic langs. Automatable Left associativity Disadvantages Hand-coded High maintenance Right associativity Large working sets Poor error messages Large table sizes Top-down recursive descent LR(1)