Preservation of Evidence of Ancient Environments and Life on Mars

Slides:



Advertisements
Similar presentations
Remaining Uncertainties: Little evidence for shorelines corresponding to the elevation of the delta surface and the spillway to the eastern basin, though.
Advertisements

A Traverse through Hesperian Ridged Plains on Mars: Extending the Work of Ron Greeley in Gusev Crater Steve Ruff, Arizona State University Vicky Hamilton,
1 The Hesperian. 2 What’s important in the Late Noachian/Hesperian/Early Amazonian? Impact rate declining rapidly Volcanic resurfacing at a maximum? Hesperian.
Geology of the Thaumasia region, Mars: plateau development, valley origins, and magmatic evolution by James M. Dohm, Kenneth L. Tanaka.
Oceans on Mars By Carr and Head Presented by Mark Popinchalk An assessment of the observational evidence and possible fate.
AQUEOUS SEDIMENTARY DEPOSITS IN HOLDEN CRATER: LANDING SITE FOR THE MARS SCIENCE LABORATORY Rossman P. Irwin III and John A. Grant Smithsonian Institution,
Martian Craters with Interior Deposits: Global Survey Results and Wind Model P21D-1875 Kristen A. Bennett 1 and Mark Schmeeckle 2 1 School of Earth and.
Broad Perspectives on Preferred Types of Mars Science Laboratory Landing Sites: Experience from Characteristics of Previous Landing Sites and Developing.
Mars Global Surveyor Mars Orbiter Camera 8 May 2006 Confidential and Proprietary Material of MSSS. This document may contain information subject to the.
Modern Exploration Global Surveyor.  Objectives:  High resolution imaging of the surface  Study the topography and gravity  Study the role of water.
Remaining Uncertainties: Is there evidence of a shoreline/bench in Eberswalde crater corresponding to the elevation of the delta surface and the spillway.
The Light-toned Sediments in and near lower Mawrth Vallis are a Drape Deposit Alan D. Howard Jeffrey M. Moore.
The Lunar Reconnaissance Orbiter (LRO) is the first mission in NASA's Vision for Space Exploration, a plan to return to the moon and then to travel to.
Paleo-surface Long/lat: from E, 24.21N to E, 23.95N Rational: A layer of the clay unit remained at the surface for a longer time than the rest.
Small valleys in the southern part of the ellipse Long/lat: E, 23.85N Rational: Sediments deposited in this partly filled valley may be of utmost.
Valleys & inverted valleys in Mawrth Vallis flank Long/lat: E, 24.11N E, 24.06N E, 24.04N E, 23.99N E, 24.17N.
Remnant buttes Long/lat: (in random order) E, 23.89N E, 23.95N E, 23.98N E, 24.04N E, 24.05N E, 24.14N.
Large valleys north of landing site Long/lat: from E, 24.26N to E, 24.58N Rational: Sediments deposited in these valleys may be of utmost interest.
Lower blue unit Long/lat: E, 23.97N Rational: This different mineralogy reveals different conditions of formation/alteration. Morphology & mineralogy:
The Mawrth Vallis Phyllosilicates Within a Regional Context: Extent, stratigraphy, and mineralogy of Phyllosilicates around Mawrth Vallis and Western Arabia.
Mars Exploration Rovers and Mars. Evidence for Liquid Water on Mars (in remote past) Valley networks Outflow channels “Northern Ocean”
The Martian environment has been more Earth-like than that of any other planet in our solar system.
Study of bound water in the surface layer of Mars Workshop HEND-2002 “The First year of HEND operations on the NASA Odyssey Mars Orbiter” May 20-22, 2002.
Write 3 three facts you already know about Mars. WHAT YOU KNOW.
Mars Exploration Rovers. SpiritOpportunity Mars Exploration Rovers  Launch: June 10, 2003  Landed on Mars: January 4  Location: Gusev Crater  Planned.
PRELIMINARY ANALYSIS; FOR DISCUSSION PURPOSES ONLY File name: MSLOutcomes_v11.ppt Potential MSL Outcomes and Discovery Response Joy Crisp, David Beaty,
Stream Channels. There is some overlap of Earth and Mars surface conditions Worst of Mars Worst of Earth.
MSL Status/Update for MEPAG John Grotzinger 1, Joy Crisp 2, and Ashwin Vasavada 2 1 California Institute of Technology 2 Jet Propulsion Laboratory, California.
Northwestern Slope Valleys (NSVS): Prime Candidate Site For MSL Exploration Of Mars J.M. Dohm, R.C. Anderson, V Baker, T.M. Hare, S.J. Wheelock.
Workshop on Martian Phyllosilicates: Recorders of Aqueous Processes? MEPAG, March 4, 2009 J-Pierre Bibring IAS Orsay, France ias.fr NOTE ADDED.
MARS GLOBAL SURVEYOR ASIA TOOKE AND AVERY MORGAN.
THE EBERSWALDE DELTAIC COMPLEX AS A HIGH SCIENCE-RETURN TARGET FOR THE 2009 MARS SCIENCE LABORATORY Juergen Schieber, Department of Geological Sciences,
Evaluating New Candidate Landing Sites on Mars: Current orbital assets have set the new standard for data required for identifying and qualifying new Mars.
Mars Exploration Rovers Entry, Descent, Landing and Deployment.
MSL Science Team Landing Sites Discussions — Gale CraterEdgett, p. 1 Gale Crater MSL Candidate Landing Site in Context by K. Edgett April 2010.
Planetary Terrestrial Surfaces and Exploring Mars Jaclyn and Carlton Allen Astromaterials Research and Exploration Science at Johnson Space Center.
Identifying Ancient Glacial Features in The Circum-Argyre Region, Mars, Using HiRISE, CTX, and MOC Imagery Alexander Prescott Mentor: Victor R. Baker Department.
NASA’s Exploration Plan: “Follow the Water” GEOLOGY LIFE CLIMATE Prepare for Human Exploration When Where Form Amount WATER NASA’s Strategy for Mars Exploration.
Preservation of Evidence of Ancient Environments and Life on Mars
PROPOSED EXPLORATION ZONE TITLE Workshop Abstract # AUTHOR(s) with AFFILIATIONS.
Mars Science Laboratory 1st Landing Site Workshop Pasadena, CA — 31 May – 2 June Northern Sinus Meridiani Landing Sites for MSL K. S. Edgett and.
C.M. Rodrigue, 2015 Geography, CSULB Geography on Mars: Third Order of Relief Los Angeles Geographical Society 6 March 2015 Dr. Christine M. Rodrigue Geography.
Interlude  Viking mission operations ended in the early 1980s  Viking missions gave scientists the most complete picture of Mars to date. What does this.
PROPOSED MARS LANDING SITES FOR MER A & B West Hemisphere Centered at: 30°N, 30°W East Hemisphere Centered at: 30°N, 210°W 10°N 15°S 0° O OO O O 10°N 15°S.
Mineralogy of the Martian Surface Bethany Ehlmann and Christopher Edwards.
Mars Rover Exploration at Gusev Crater and Back-Ups Characterization and Science Potential of the Sites 2nd 2003 Landing Site Workshop, Pasadena, Ca, Oct.
East Melas Chasma: Insight into Valles Marineris Matt Chojnacki & Brian Hynek Laboratory for Atmospheric and Space the University of Colorado.
The Gale Crater Mound: A Candidate Landing Site for the 2009 Mars Science Laboratory Jim Bell 1, Ken Edgett 2, Scott Rowland 3, Mike Malin 2 Representing.
Enabling Capabilities A Robotic Field Geologist Access to a site mapped from orbit Long life, mobility, capability to explore a local region Remote sensing.
Search for Life on MARS. Q: Why is water important for life? A: Because it’s such a great solute.
Mars Science Laboratory 1st Landing Site Workshop Pasadena, CA — 31 May – 2 June Fine-layered Meridiani crater for the MSL Landing Site L. V. Posiolova,
NAI Mars Focus Group Videocon Science and Landing Site Priorities for the Mars 2003 Mission Presentations by: n Ronald Greeley (ASU) & Ruslan Kuzmin (Vernadsky.
Happy Halloween!. Homework #6 Due 6:00 pm today Exam #2 on Wednesday.
SEDIMENTARY ROCKS AND METHANE – SOUTHWEST ARABIA TERRA Carlton Allen and Dorothy Oehler NASA Johnson Space Center Houston, TX Elizabeth Venechuk Scripps.
A Wealth of Opportunities The signature of water is pervasive in and around the proposed ellipse, which resides ~600 km ENE of Opportunity –Ellipse: Over.
TRAVERSE ACROSS LOWER STRATA OF MERIDIANI PLANUM LAYERED DEPOSITS Alan D. Howard Department of Environmental Sciences University of Virginia Jeffrey M.
Modern Exploration Mars Global Surveyor  “The mission will provide a global portrait of Mars as it exists today…This new view will help planetary scientists.
Sinus Meridiani (Hematite) Landing Site for 2003 MER Phil Christensen & The TES Science Team Presentation to NAI MWG by Vicky Hamilton 8 January 2001.
Remaining Uncertainties: Little evidence of a shoreline/bench in Eberswalde crater corresponding to the elevation of the delta surface and the spillway.
Aqueous Alteration and Habitability in Nili Fossae J.F. Mustard, F. Poulet, N. Mangold, J-P. Bibring, R.E. Milliken, S. Pelkey, and L. Kanner Noachian.
Introduction: The Mawrth Vallis region has been identified by the Mars Express OMEGA and MRO CRISM instruments as a region with abundant hydrated phyllosilicate.
Visit NE Syrtis Major! Win Valuable Martian Geological History! Ralph P. Harvey Case Western Reserve University Planetary Time Share Specialist Ralph P.
EARLY HISTORY OF THE TERRESTRIAL PLANETS
Mars.
MARS PIA km N.
Clark R. Chapman Southwest Research Inst. Boulder, CO USA
MARS.
Mars exploration rovers
Mars-2005.
Mawrth Candidate Landing Site (Dawn Sumner, July 27, 2010)
Presentation transcript:

Preservation of Evidence of Ancient Environments and Life on Mars Mars today Early Mars ? The pace of discovery in space is quickening, spurred on by new technologies. The costs and capabilities of robotic space exploration have changed dramatically since the dawn of the space age. Robotic spacecraft allow us to explore the age old questions about the universe….. How did life begin? Does life exist elsewhere? Do habitable conditions exist elsewhere? David J. Des Marais NASA Ames Research Center

Preservation: topics Noachian-Hesperian environments & processes Persistence of ancient aqueous environments Nature of deposits in Noachian aqueous environments Phyllosilicate deposits & organic matter concentrations Preservation potential of the four “finalist” MSL sites

Importance of Age

Meridiani Planum and the Global Hydrology of Mars Importance of Elevation B A B A detected evaporite deposits Andrews-Hanna et al. (2007)

Stream Systems Stepinski & Luo, LPSC41, 2010

Gusev Crater ~180 km diameter Apollinaris Patera (volcano) Northern Lowlands Southern Highlands x Ma’Adim Vallis Gusev Crater ~180 km diameter

Orbiter view (MRO HiRISE) Husband Hill and Inner Basin ground view (MER Pancam)

Importance of Age and Depth in Crust

Oyama Crater & Mawrth Vallis bedrock exposures have a light tone; some dark-toned materials in this area are also bedrock (commonly but not always a caprock above light-toned rocks) “Mawrth mouth” Mawrth Vallis regolith covers bedrock in the ‘intermediate gray’ areas – some of that regolith is considered to be eolian-deposited dust and/or crusted eolian dust (e.g., Presley and Arvidson 1987) candidate MSL field site note Oyama formed in light-toned bedrock Oyama (107 km diam) Mawrth Vallis MGS MOC red wide angle mosaic Mawrth Vallis The name “Oyama” was approved by the IAU 26 March 2010. Named for Vance I. Oyama, Viking Gas Exchange Experiment PI. MSL Science Team Field Site Discussions – Mawrth Note: Candidate landing ellipse size and shape is approximate. 10

Pilbara Craton and Hamersley Range, W. Australia

Mars Global Surveyor MOLA Topography

Marine Chlorophyll Abundances (Low Moderate High)

Key Factors: Paleo-productivity Sedimentary redox Mineralogy Lithification Later alteration

Pilbara Craton and Hamersley Range, W. Australia

Preservation of Evidence about Ancient Mars Noachian-Hesperian environments and processes Persistence of ancient aqueous environments Noachian deposits in aqueous environments Phyllosilicate-rich deposits and organic matter contents Preservation potential of the four “finalist” MSL sites Age of deposits: mid-Noachian to early Hesperian Water persistence: effects of elevation and geologic age Allochthonous vs autochthonous phyllosilicates Redox state of deposit Lithification: rate and extent