Stats for Engineers Lecture 5

Slides:



Advertisements
Similar presentations
STATISTICS Univariate Distributions
Advertisements

Let X 1, X 2,..., X n be a set of independent random variables having a common distribution, and let E[ X i ] = . then, with probability 1 Strong law.
Exponential Distribution. = mean interval between consequent events = rate = mean number of counts in the unit interval > 0 X = distance between events.
JMB Chapter 6 Part 1 v2 EGR 252 Spring 2009 Slide 1 Continuous Probability Distributions Many continuous probability distributions, including: Uniform.
Important Random Variables Binomial: S X = { 0,1,2,..., n} Geometric: S X = { 0,1,2,... } Poisson: S X = { 0,1,2,... }
ฟังก์ชั่นการแจกแจงความน่าจะเป็น แบบไม่ต่อเนื่อง Discrete Probability Distributions.
Binomial Random Variable Approximations, Conditional Probability Density Functions and Stirling’s Formula.
Modeling Process Quality
5.2 Continuous Random Variable
Continuous Distributions
Stats for Engineers Lecture 11. Acceptance Sampling Summary One stage plan: can use table to find number of samples and criterion Two stage plan: more.
Continuous Random Variables. L. Wang, Department of Statistics University of South Carolina; Slide 2 Continuous Random Variable A continuous random variable.
Engineering Probability and Statistics - SE-205 -Chap 4 By S. O. Duffuaa.
Introduction to the Continuous Distributions
Descriptive statistics Experiment  Data  Sample Statistics Experiment  Data  Sample Statistics Sample mean Sample mean Sample variance Sample variance.
CHAPTER 6 Statistical Analysis of Experimental Data
3-1 Introduction Experiment Random Random experiment.
Class notes for ISE 201 San Jose State University
Continuous Probability Distribution  A continuous random variables (RV) has infinitely many possible outcomes  Probability is conveyed for a range of.
 Consider the number of typos on each page of your textbook…  Or the number of car accidents between exit 168 and exit 178 on IN-65.
4-1 Continuous Random Variables 4-2 Probability Distributions and Probability Density Functions Figure 4-1 Density function of a loading on a long,
Standard error of estimate & Confidence interval.
Chapter 6 Sampling and Sampling Distributions
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. Discrete Random Variables Chapter 4.
B AD 6243: Applied Univariate Statistics Understanding Data and Data Distributions Professor Laku Chidambaram Price College of Business University of Oklahoma.
Standard Statistical Distributions Most elementary statistical books provide a survey of commonly used statistical distributions. The reason we study these.
Statistical Distributions
Chapter 5 Statistical Models in Simulation
Random Variables & Probability Distributions Outcomes of experiments are, in part, random E.g. Let X 7 be the gender of the 7 th randomly selected student.
Ch4: 4.3The Normal distribution 4.4The Exponential Distribution.
Statistics for Engineer Week II and Week III: Random Variables and Probability Distribution.
Poisson Random Variable Provides model for data that represent the number of occurrences of a specified event in a given unit of time X represents the.
Random Sampling, Point Estimation and Maximum Likelihood.
Ch5 Continuous Random Variables
Probabilistic and Statistical Techniques 1 Lecture 19 Eng. Ismail Zakaria El Daour 2010.
Sampling Distribution of the Sample Mean. Example a Let X denote the lifetime of a battery Suppose the distribution of battery battery lifetimes has 
JMB Chapter 5 Part 2 EGR Spring 2011 Slide 1 Multinomial Experiments  What if there are more than 2 possible outcomes? (e.g., acceptable, scrap,
Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter 5 Discrete Random Variables.
McGraw-Hill/IrwinCopyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 5 Discrete Random Variables.
4-1 Continuous Random Variables 4-2 Probability Distributions and Probability Density Functions Figure 4-1 Density function of a loading on a long,
1 Since everything is a reflection of our minds, everything can be changed by our minds.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Section 5-5 Poisson Probability Distributions.
4.3 More Discrete Probability Distributions NOTES Coach Bridges.
1 Sampling distributions The probability distribution of a statistic is called a sampling distribution. : the sampling distribution of the mean.
Statistics Sampling Distributions and Point Estimation of Parameters Contents, figures, and exercises come from the textbook: Applied Statistics and Probability.
Chapter 31Introduction to Statistical Quality Control, 7th Edition by Douglas C. Montgomery. Copyright (c) 2012 John Wiley & Sons, Inc.
Central Limit Theorem Let X 1, X 2, …, X n be n independent, identically distributed random variables with mean  and standard deviation . For large n:
Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter 5 Discrete Random Variables.
Chapter 6 Large Random Samples Weiqi Luo ( 骆伟祺 ) School of Data & Computer Science Sun Yat-Sen University :
Chap 5-1 Chapter 5 Discrete Random Variables and Probability Distributions Statistics for Business and Economics 6 th Edition.
4-1 Continuous Random Variables 4-2 Probability Distributions and Probability Density Functions Figure 4-1 Density function of a loading on a long,
MECH 373 Instrumentation and Measurements
Statistical Quality Control, 7th Edition by Douglas C. Montgomery.
Known Probability Distributions
Probability Distributions: a review
Engineering Probability and Statistics - SE-205 -Chap 4
Lesson 98 – Poisson Distribution
The Exponential and Gamma Distributions
Continuous Random Variables
Appendix A: Probability Theory
Chapter 7: Sampling Distributions
Multinomial Distribution
Multinomial Experiments
Some Discrete Probability Distributions Part 2
Some Discrete Probability Distributions Part 2
Sampling Distributions (§ )
Multinomial Experiments
Multinomial Experiments
Multinomial Experiments
Multinomial Experiments
Presentation transcript:

Stats for Engineers Lecture 5

Summary From Last Time Discrete Random Variables 𝑛 𝑘 𝑝 𝑘 1−𝑝 𝑛−𝑘 𝑛 𝑘 𝑝 𝑘 1−𝑝 𝑛−𝑘 Binomial Distribution 𝑃 𝑋=𝑘 = Probability of number of 𝑘 success when you do 𝑛 Bernoulli trials Mean and variance 𝜇=𝑛𝑝 𝜎 2 =𝑛𝑝(1−𝑝) 𝑃 𝑋=𝑘 = 𝑒 −𝜆 𝜆 𝑘 𝑘! Poisson distribution Probablily of 𝑘 randomly occurring events, given average number is 𝜆 Mean and variance 𝜇=𝜆 𝜎 2 =var 𝑋 =𝜆 Is approximation to Binomial when n is large and p is small Continuous Random Variables 𝑃 𝑎≤𝑋≤𝑏 = 𝑎 𝑏 𝑓 𝑥 ′ 𝑑𝑥′ Probability Density Function (PDF) 𝑓(𝑥) Uniform distribution 𝑓 𝑥 =

Number of trains arriving at Falmer every hour Poisson or not? Which of the following is most likely to be well modelled by a Poisson distribution? Number of trains arriving at Falmer every hour Number of lottery winners each year that live in Brighton Number of days between solar eclipses Number of days until a component fails

Are they Poisson? Answers: Number of trains arriving at Falmer every hour NO, (supposed to) arrive regularly on a timetable not at random Number of lottery winners each year that live in Brighton Yes, is number of random events in fixed interval Number of days between solar eclipses NO, solar eclipses are not random events and this is a time between random events, not the number in some fixed interval Number of days until a component fails NO, random events, but this is time until a random event, not the number of random events

Time between random events / time till first random event ? If a Poisson process has constant average rate 𝜈, the mean after a time 𝑡 is 𝜆=𝜈𝑡. What is the probability distribution for the time to the first event? ⇒ Exponential distribution Poisson - Discrete distribution: P(number of events) Exponential - Continuous distribution: P(time till first event)

Exponential distribution The continuous random variable 𝑌 has the Exponential distribution, with constant rate parameter 𝜈 if: 𝑓(𝑦) 𝜈=1 𝑓 𝑦 = 𝜈 𝑒 −𝜈𝑦 , 𝑦>0 0, & 𝑦<0 𝑦 Occurrence   1) Time until the failure of a part. 2) Separation between randomly happening events - Assuming the probability of the events is constant in time: 𝜈=const

Relation to Poisson distribution If a Poisson process has constant average rate 𝜈, the mean after a time 𝑡 is 𝜆=𝜈𝑡. The probability of no-occurrences in time 𝑡 is   𝑃 𝑘=0 = 𝑒 −𝜆 𝜆 𝑘 𝑘! = 𝑒 −𝜆 = 𝑒 −𝜈𝑡 . If 𝑓(𝑡) is the pdf for the first occurrence, then the probability of no occurrences is 𝑃(no occurrence by 𝑡) =1−𝑃(first occurrence has happened by 𝑡) =1− 0 𝑡 𝑓 𝑡 𝑑𝑡 ⇒1− 0 𝑡 𝑓 𝑡 𝑑𝑡 = 𝑒 −𝜈𝑡 ⇒ 0 𝑡 𝑓 𝑡 𝑑𝑡=1− 𝑒 −𝜈𝑡 Solve by differentiating both sides respect to 𝑡 assuming constant 𝜈, 𝑑 𝑑𝑡 0 𝑡 𝑓 𝑡 𝑑𝑡= 𝑑 𝑑𝑡 1− 𝑒 −𝜈𝑡 The time until the first occurrence (and between subsequent occurrences) has the Exponential distribution, parameter 𝜈. ⇒ 𝑓 𝑡 =𝜈 𝑒 −𝜈𝑡

Example On average lightening kills three people each year in the UK, 𝜆=3. So the rate is 𝜈=3/year. Assuming strikes occur randomly at any time during the year so 𝜈 is constant, time from today until the next fatality has pdf (using 𝑡 in years) 𝑓 𝑡 =𝜈 𝑒 −𝜈𝑡 =3 𝑒 −3𝑡 𝑓(𝑡) E.g. Probability the time till the next death is less than one year? 0 1 𝑓 𝑡 𝑑𝑡= 0 1 3 𝑒 −3𝑡 𝑑𝑡 = 3 𝑒 −3𝑡 −3 0 1 =− 𝑒 −3 +1≈0.95 𝑡

Exponential distribution A certain type of component can be purchased new or used. 50% of all new components last more than five years, but only 30% of used components last more than five years. Is it possible that the lifetimes of new components are exponentially distributed? Question from Derek Bruff YES NO

Exponential distribution A certain type of component can be purchased new or used. 50% of all new components last more than five years, but only 30% of used components last more than five years. Is it possible that the lifetimes of new components are exponentially distributed? Exponential distribution models time between independent randomly occurring events, where frequency of events is independent of time. i.e. probability of failing in the first 5 years has to be same as the probability of failing in any other period of 5 years. No memory property. The observed lifetimes imply that instead the failure rate must increase with time NOT exponential

Mean and variance of exponential distribution   𝜇= −∞ ∞ 𝑦 𝑓 𝑦 𝑑𝑦 = 0 ∞ 𝑦𝜈 𝑒 −𝜈𝑦 𝑑𝑦 = −𝑦 𝑒 −𝜈𝑦 0 ∞ + 0 ∞ 𝑒 −𝜈𝑦 𝑑𝑦 = − 𝑒 −𝜈𝑦 𝜈 0 ∞ = 1 𝜈 𝜎 2 = −∞ ∞ 𝑦 2 𝑓 𝑦 𝑑𝑦 − 𝜇 2 = 0 ∞ 𝑦 2 𝜈 𝑒 −𝜈𝑦 𝑑𝑦 − 1 𝜈 2 = − 𝑦 2 𝑒 −𝜈𝑦 0 ∞ +2 0 ∞ 𝑦 𝑒 −𝜈𝑦 𝑑𝑦 − 1 𝜈 2 =0+2 𝜇 𝜈 − 1 𝜈 2 = 1 𝜈 2 𝜎 𝜎 𝜈=3 𝜇= 1 3

Example: Reliability The time till failure of an electronic component has an Exponential distribution and it is known that 10% of components have failed by 1000 hours. (a) What is the probability that a component is still working after 5000 hours? (b) Find the mean and standard deviation of the time till failure. Answer   Let Y = time till failure in hours; 𝑓 𝑦 =𝜈 𝑒 −𝜈𝑦 . 𝑃 𝑌≤1000 = 0 1000 𝜈 𝑒 −𝜈𝑦 (a) First we need to find 𝜈 = − 𝑒 −𝜈𝑦 0 1000 =1− 𝑒 −1000𝜈 𝑃 𝑌≤1000 =0.1⇒ 1− 𝑒 −1000𝜈 =0.1 ⇒ 𝑒 −1000𝜈 =0.9 ⇒−1000𝜈= ln 0.9 = −0.10536 ⇒𝜈≈1.05× 10 −4

If 𝑌 is the time till failure, the question asks for 𝑃(𝑌>5000): 𝑃 𝑌>5000 = 5000 ∞ 𝜈 𝑒 −𝜈𝑦 𝑑𝑦 = − 𝑒 −𝜈𝑦 5000 ∞ = 𝑒 −5000𝜈 ≈0.59 (b) Find the mean and standard deviation of the time till failure. Answer: Mean = 1/𝜈 = 9491 hours. Standard deviation = Variance = 1 𝜈 2 =1/𝜈 = 9491 hours

The distance between defects in an optical fibre Is it exponential? Which of the following random variables is best modelled by an exponential distribution? Question adapted from Derek Bruff The distance between defects in an optical fibre The number of days between someone winning the National Lottery The number of fuses that blow in the UK today The hours of sunshine in Brighton this week assuming an average of 7.2hrs/day

Is it exponential? Which of the following random variables is best modelled by an exponential distribution? The distance between defects in an optical fibre - YES: continuous distribution that is the separation between independent random events (the location of the defects) The number of days between someone winning the National Lottery - NO: continuous (if you allow fractional days), but draws happen regularly on a schedule The number of fuses that blow in the UK today - NO: this is a discrete distribution – the number of events is a Poisson distribution (exponential is the distribution of times between events) The hours of sunshine in Brighton this week assuming an average of 7.2hrs/day - NO: This is a continuous variable, but not the time between independent random events

𝑓 𝑥 = 1 2𝜋 𝜎 2 𝑒 − 𝑥−𝜇 2 2 𝜎 2 (−∞<𝑥< ∞) Normal distribution The continuous random variable 𝑋 has the Normal distribution if the pdf is:   𝑓 𝑥 = 1 2𝜋 𝜎 2 𝑒 − 𝑥−𝜇 2 2 𝜎 2 (−∞<𝑥< ∞) 𝜇: mean 𝜎: standard deviation Note: The distribution is also sometimes called a Gaussian distribution X lies between 𝜇- 1.96 and 𝜇+ 1.96 with probability 0.95 i.e. X lies within 2 standard deviations of the mean approximately 95% of the time. 𝜎 −∞ ∞ 𝑓 𝑥 𝑑𝑥=1 [see notes for proof]

If 𝑋 has a Normal distribution with mean μ and variance 𝜎 2 , write 𝑋∼𝑁 𝜇, 𝜎 2 Occurrence of the Normal distribution   1) Quite a few variables, e.g. distributions of sizes, measurement errors, detector noise. (Bell-shaped histogram). 2) Sample means and totals - see later, Central Limit Theorem. 3) Approximation to several other distributions - see later.