E XPONENTIAL G ROWTH M ODEL W RITING E XPONENTIAL G ROWTH M ODELS A quantity is growing exponentially if it increases by the same percent in each time.

Slides:



Advertisements
Similar presentations
8.3 The natural base e.
Advertisements

7-1 Exponential Functions, Growth and Decay Warm Up
Exponential Growth Section 8.1. Exponential Function  f(x) = ab x where the base b is a positive number other than one.  Graph f(x) = 2 x  Note the.
Exponential Functions
EXAMPLE 4 Solve a multi-step problem Write an exponential growth model giving the number n of incidents t years after About how many incidents were.
7.1 Exponential Functions, Growth, and Decay
If a quantity increases by the same proportion r in each unit of time, then the quantity displays exponential growth and can be modeled by the equation.
Lesson 3.9 Word Problems with Exponential Functions
8-8: E XPONENTIAL G ROWTH AND D ECAY Essential Question: Explain the difference between exponential growth and decay.
Partner practice Chapter 8 Review WHITEBOA RD. Chapter 8 Review DRAW -The basic shape of the graph of a linear equation -The basic shape of the graph.
Exploring Exponential Growth and Decay Models Sections 8.1 and 8.2.
Lesson 8.5 and 8.6 Objectives:
Lesson 3.8 Solving Problems Involving Exponential Functions
Graph Exponential Growth Functions
8.1 Exponential Growth. Learning Targets Students should be able to…  Graph exponential growth functions.
7-6 & 7-7 Exponential Functions
Exponential Growth & Decay in Real-Life Chapters 8.1 & 8.2.
8-1: Exponential Growth day 2 Objective CA 12: Students know the laws of fractional exponents, understanding exponential functions, and use these functions.
If a quantity decreases by the same proportion r in each unit of time, then the quantity displays exponential decay and can be modeled by the equation.
Objectives: Today we will … 1.Write and solve exponential growth functions. 2.Graph exponential growth functions. Vocabulary: exponential growth Exponential.
7.2 Compound Interest and Exponential Growth ©2001 by R. Villar All Rights Reserved.
Adapted from If a quantity increases by the same proportion r in each unit of time, then the quantity displays exponential growth and.
8.1 Multiplication Properties of Exponents Multiplying Monomials and Raising Monomials to Powers Objective: Use properties of exponents to multiply exponential.
Chapter 8 Slide the Eraser. Question 1 write the following using exponents? 7 · 7 2 · 2 · 2 x · x · x· x · x· x · x.
8.5 Exponential Growth and 8.6 Exponential Decay FUNctions
Writing Exponential Growth Functions
Graphing Exponential Growth Functions
Warm-Up 1.5 –2 Evaluate the expression without using a calculator. ANSWER –24 4. State the domain and range of the function y = –(x – 2)
THE NATURAL BASE EXAMPLE 1 Simplify natural base expressions Simplify the expression. a.e2e2 e5e5 = e = e7e7 b. 12e4e4 3e3e3 = e 4 – 3 4 = 4e4e.
A colony of 10,000 ants can increase by 15%
1 Example – Graphs of y = a x In the same coordinate plane, sketch the graph of each function by hand. a. f (x) = 2 x b. g (x) = 4 x Solution: The table.
Exponential Functions Standard: A.CED.1. Essential Questions: How do I make a table of values for an exponential function? How do I graph an exponential.
If a quantity decreases by the same proportion r in each unit of time, then the quantity displays exponential decay and can be modeled by the equation.
Algebra 1 Section 8.5 Apply Exponential Functions When a quantity grows by the same amount each day it is experiencing linear growth. y = mx + b When a.
Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 4 Inverse, Exponential, and Logarithmic Functions Copyright © 2013, 2009, 2005 Pearson Education,
Warm Up HW Check Jeopardy Exponents GraphsExponential Growth/Decay Compound Interest Random Q $100 Q $200 Q $300 Q $400 Q $500 Q $100 Q $200 Q $300.
Exponential Decay Functions 4.2 (M3) p Warm-Up Evaluate the expression without using a calculator. ANSWER –1 ANSWER –3 2.– ANSWER.
College Algebra & Trigonometry
7.1 E XPONENTIAL F UNCTIONS, G ROWTH, AND D ECAY Warm Up Evaluate (1.08) (1 – 0.02) ( ) –10 ≈ ≈ ≈ Write.
Exponential Functions,
How do I graph and use exponential growth and decay functions?
7-1 Exponential Functions
A PPLICATIONS OF E XPONENTIAL E QUATIONS : C OMPOUND I NTEREST & E XPONENTIAL G ROWTH Math 3 MM3A2.
Exponential Growth and Decay. M & M Lab Part 1- Growth What happened to the number of M&Ms? Part 2-Decay What happened to the number of M&Ms? Increased.
Warm-Up Exercises Evaluate the expression without using a calculator. ANSWER –1 ANSWER –3 2.–
E XPONENTIAL F UNCTIONS GET A GUIDED NOTES SHEET FROM THE FRONT!
Algebra 2 Exploring Exponential Models Lesson 7-1.
Chapter 7 Section 1. EXAMPLE 1 Graph y = b for b > 1 x SOLUTION Make a table of values.STEP 1 STEP 2 Plot the points from the table. Graph y =. x 2.
10.2 Exponential and Logarithmic Functions. Exponential Functions These functions model rapid growth or decay: # of users on the Internet 16 million (1995)
Drill If a quantity increases by the same proportion r in each unit of time, then the quantity displays exponential growth and can be modeled by the.
6.4 Exponential Growth and Decay
If a quantity increases by the same proportion r in each unit of time, then the quantity displays exponential growth and can be modeled by the equation.
E XPONENTIAL W ORD P ROBLEMS Unit 3 Day 5. D O -N OW.
7-7B Exponential Decay Functions Algebra 1. Exponential Decay Where a>0 & 0 < b< 1 a is the initial amount b is the decay factor y-intercept is (0,a)
WARM UP 3 SOLVE THE EQUATION. (Lesson 3.6) 1. x + 9 = x – 5 = x - 8 = 2.
Exponential Functions
Lesson 3.9 Word Problems with Exponential Functions
Exponential Growth and Exponential Decay
Algebra 1 Section 8.5 Apply Exponential Functions
EXPONENTIAL GROWTH MODEL
Exponential Functions
GRAPH EXPONENTIAL DECAY FUNCTIONS
Write the percent as a decimal.
Exponential Functions
Exponential Functions
EXPONENTIAL GROWTH MODEL
Exponential Functions
Notes Over 8.5 Exponential Growth
Exponential Functions
Presentation transcript:

E XPONENTIAL G ROWTH M ODEL W RITING E XPONENTIAL G ROWTH M ODELS A quantity is growing exponentially if it increases by the same percent in each time period. C is the initial amount. t is the time period. (1 + r) is the growth factor, r is the growth rate. The percent of increase is 100r. y = C (1 + r) t

Finding the Balance in an Account C OMPOUND I NTEREST You deposit $500 in an account that pays 8% annual interest compounded yearly. What is the account balance after 6 years? S OLUTION M ETHOD 1 S OLVE A S IMPLER P ROBLEM Find the account balance A 1 after 1 year and multiply by the growth factor to find the balance for each of the following years. The growth rate is 0.08, so the growth factor is = A 1 = 500(1.08) = 540 Balance after one year A 2 = 500(1.08)(1.08) = Balance after two years A 3 = 500(1.08)(1.08)(1.08) = A 6 = 500(1.08) Balance after three years Balance after six years

E XPONENTIAL G ROWTH M ODEL C is the initial amount.t is the time period. (1 + r) is the growth factor, r is the growth rate. The percent of increase is 100r. y = C (1 + r) t E XPONENTIAL G ROWTH M ODEL 500 is the initial amount. 6 is the time period. ( ) is the growth factor, 0.08 is the growth rate. A 6 = 500 ( 1.08 ) Balance after 6 years A 6 = 500 ( ) 6 S OLUTION M ETHOD 2 U SE A F ORMULA Finding the Balance in an Account C OMPOUND I NTEREST You deposit $500 in an account that pays 8% annual interest compounded yearly. What is the account balance after 6 years? Use the exponential growth model to find the account balance A. The growth rate is The initial value is 500.

Writing an Exponential Growth Model A population of 20 rabbits is released into a wildlife region. The population triples each year for 5 years.

So, the growth rate r is 2 and the percent of increase each year is 200%. 1 + r = 3 Writing an Exponential Growth Model A population of 20 rabbits is released into a wildlife region. The population triples each year for 5 years. a. What is the percent of increase each year? S OLUTION The population triples each year, so the growth factor is r = 3 The population triples each year, so the growth factor is 3. Reminder: percent increase is 100r.

A population of 20 rabbits is released into a wildlife region. The population triples each year for 5 years. b. What is the population after 5 years? Writing an Exponential Growth Model S OLUTION After 5 years, the population is P = C(1 + r) t Exponential growth model = 20(1 + 2) 5 = = 4860 Help Substitute C, r, and t. Simplify. Evaluate. There will be about 4860 rabbits after 5 years.

A Model with a Large Growth Factor G RAPHING E XPONENTIAL G ROWTH M ODELS Graph the growth of the rabbit population. S OLUTION Make a table of values, plot the points in a coordinate plane, and draw a smooth curve through the points. t P Time (years) Population P = 20 ( 3 ) t Here, the large growth factor of 3 corresponds to a rapid increase

W RITING E XPONENTIAL D ECAY M ODELS A quantity is decreasing exponentially if it decreases by the same percent in each time period. E XPONENTIAL D ECAY M ODEL C is the initial amount. t is the time period. (1 – r ) is the decay factor, r is the decay rate. The percent of decrease is 100r. y = C (1 – r) t

Writing an Exponential Decay Model C OMPOUND I NTEREST From 1982 through 1997, the purchasing power of a dollar decreased by about 3.5% per year. Using 1982 as the base for comparison, what was the purchasing power of a dollar in 1997? S OLUTION Let y represent the purchasing power and let t = 0 represent the year The initial amount is $1. Use an exponential decay model. = (1)(1 – 0.035) t = t y = C (1 – r) t y = Exponential decay model Substitute 1 for C, for r. Simplify. Because 1997 is 15 years after 1982, substitute 15 for t. Substitute 15 for t. The purchasing power of a dollar in 1997 compared to 1982 was $

Graphing the Decay of Purchasing Power G RAPHING E XPONENTIAL D ECAY M ODELS Graph the exponential decay model in the previous example. Use the graph to estimate the value of a dollar in ten years. S OLUTION Make a table of values, plot the points in a coordinate plane, and draw a smooth curve through the points Years From Now Purchasing Power (dollars) t y Your dollar of today will be worth about 70 cents in ten years. Your dollar of today will be worth about 70 cents in ten years. y = t Help

G RAPHING E XPONENTIAL D ECAY M ODELS E XPONENTIAL G ROWTH AND D ECAY M ODELS y = C (1 – r) t y = C (1 + r) t E XPONENTIAL G ROWTH M ODEL E XPONENTIAL D ECAY M ODEL 1 + r > 1 0 < 1 – r < 1 C ONCEPT S UMMARY An exponential model y = a b t represents exponential growth if b > 1 and exponential decay if 0 < b < 1. C is the initial amount.t is the time period. (1 – r) is the decay factor, r is the decay rate. (1 + r) is the growth factor, r is the growth rate. (0, C)

E XPONENTIAL G ROWTH M ODEL C is the initial amount. t is the time period. (1 + r) is the growth factor, r is the growth rate. The percent of increase is 100r. y = C (1 + r) t Back

E XPONENTIAL D ECAY M ODEL C is the initial amount. t is the time period. (1 – r) is the decay factor, r is the decay rate. The percent of decrease is 100r. y = C (1 – r) t