عنوان آزمايشگاه: اسپكتروفتومتري

Slides:



Advertisements
Similar presentations
Spectrophotometer.
Advertisements

Introduction to Spectrophotometry & Beer’s Law
An introduction to Ultraviolet/Visible Absorption Spectroscopy
Atomic Absorption Spectroscopy (AAS)I
A QUANTITATIVE ANALYSIS OF COMMON METALS IN LOCAL WATER SOURCES.
SPECTROSCOPY.
UV-vis. Applications Quantitative analysis Organics (if composition is simple and known) Specific binding to chromaphore Metal-ligand absorption (d-orbital.
Components of Optical Instruments or What’s inside that spectrometer?
Lecture 33 Review for Exam 4 Interference, Diffraction Reflection, Refraction.
Advanced Higher Chemistry Unit 1 Spectroscopy. Spectroscopy  Spectroscopy is used to give information regarding the structure of atoms or molecules.
Are you getting the concept? Calculate D a, D l, R d and s g for 1 st order diffraction under optimal conditions for the indicated 0.5 m grating with 100.
Gratings. Double Slit Resolution  The bright bands from a double slit are wide. Exact maximum difficult to determine  There is a broad area with some.
Chapter 13 An Introduction to Ultraviolet/Visible Molecular Absorption Spectrometry Absorption measurements based upon ultraviolet and visible radiation.
Molecular Spectrometry (UV and Visible) Part 1: Absorption.
UV–Vis Molecular Absorption Spectrometry Chapter 13.
Lecture 2b. Electromagnetic Spectrum Visible range: = nm Ultraviolet: = nm Low energyHigh energy.
Ultraviolet – Visible Spectrophotometer. What is UV – Vis spectroscopy? Ultraviolet – visible spectroscopy is a measure of the absorbance of radiation.
1.1 Range of molar absorptivity
5 Components Common to All Optical Spectrometers Source Transparent Sample Holder Wavelength Selector Radiation Detector Signal Processor and Readout.
Spectrophotometer Prof.Dr. Moustafa M. Mohamed Vice Dean Faculty of Allied Medical Science Pharos University in Alexandria, EGYPT.
spectrophotoMETER Dr. Beenish Zaki, Instructor
OU NanoLab/NSF NUE/Bumm & Johnson Spectrophotometry Key Concepts Lambert’s Law of Absorption Beer’s Law Beer-Lambert Law Absorption Cross-Sections Photometric.
1 Atomic Absorption Spectroscopy Lecture Emission in Flames There can be significant amounts of emission produced in flames due to presence of flame.
Simple Double Beam Spectrometer
ANALYTICAL CHEMISTRY CHEM 3811 CHAPTER 19 DR. AUGUSTINE OFORI AGYEMAN Assistant professor of chemistry Department of natural sciences Clayton state university.
Microplate reader spectrophotometer. The Beer-Lambert Law A=abc Now let us look at the Beer-Lambert law and explore it's significance. A is absorbance.
Spectrophotometry.
Spectrophotometer.
SPECTROPHOTOMETRY. Spectrophotometry Determines concentration of a substance in solution –Measures light absorbed by solution at a specific wavelength.
CLS 332 CLINICAL INSTRUMENTAL ANALYSIS. A VISIBLE ABSORPTION SPECTROMETER.
H spectra 656 nm 486 nm 434 nm 410 nm. Ne spectra 540.1green 585.2yellow 588.2yellow 603.0orange 607.4orange 616.4orange 621.7red-orange 626.6red-orange.
Photometry.
QUANTITATIVE ANALYSIS Determining amount of ions present in samples.
Chapter 19-2 Applications of Diffraction. Diffraction by Reflection Tiny ridges of beetle or CD have spacings only a few hundred nanometers apart Each.
Menu Lamps provide the light in the ultraviolet/visible light spectrophotometer.
Atomic Absorption Spectroscopy.  Qualitative test for metals in solution  Can also be used for coloured lights  This emission of light is called an.
Spectrophotometry at a Glance
Instrumental Analysis
hn1 hn2 optical l selector source sample detector signal processor
Spectroscopy Atomic emission spectroscopy (AES)
11 Instrumental Analysis Tutorial Use mathematical formulae to calculate absorbance, transmittance of a sample and wave parameters. Determine factors.
1 Instrumental Analysis Tutorial 2. 2 Objectives By the end of this session the student should be able to: 1.Describe the grating principle of work. 2.Describe.
Chem. 133 – 3/16 Lecture.
Introduction to Spectrophotometry
Diffraction Gratings.
Lab1 A VISIBLE ABSORPTION SPECTROMETER
Spectroscopy Techniques
Principles and practice of Spectrophotometer
Spectrophotometer - Visible Type Spectro - photometer consists of two instruments : Spectrometer   Photometer  Spectrometer   for producing light.
Chapter 13 Chapter 13 Chapter 13 Chapter 13 Chapter 13 Chapter 13
Principles of Spectrophotometer
Spectrophotometer Dr . S. Jayakumar.

Diffraction Gratings.
Measurements involving light –A Basic Principles and Instrumentation
Practical Absorbance and Fluorescence Spectroscopy
ABSORBANCE LAWS BEER’S LAW
Lecture 2b Beer’s Lambert Law.
شيمی تجزيه دستگاهی Instrumental Analysis, Second edition, Gary D.Christian and James E.O , Reily درس شيمی تجزيه دستگاهی ـ 3 واحد ـ رشته شيمی و شيمی.
Analytical methods Prepared By Dr. Biswajit Saha.
Colorimeters OR photometers
OL 750 Measurement Systems
Instrumentation for UV and visible absorption
Spectroscopy Uses emission and absorption of light by electrons moving between ground and excited state configuration, hence electronic configuration.
Advanced Pharmaceutical Analysis UV spectroscopy
Spectrophotometry A method to determine concentration of a species exploiting the absorption of EMR.
Electromagnetic Spectrum
OL 750 Spectroradiometer & Linear Spectral Transmission Measurements
Spectrophotometric Analysis
Presentation transcript:

عنوان آزمايشگاه: اسپكتروفتومتري هدف آزمايشگاه: آشنايي بااجزاي دستگاه اسپكتروفتومتري وقوانين اسپكتروفتومتري اسپکتروفتومتر ناحیه مریی Spectrophotometer

اسپكتروفتومتر اسپكتروفتومتر يا طيف سنج يك دستگاه آزمايشگاهي اوليه است كه جهت خواندن نتايج آزمايش‌هايي كه واكنش آن‌ها از نوع End point هستند به كار مي‌رود. اين دستگاه ميزان جذب يا عبور طول موج‌هاي مشخصي از انرژي تابشي (نور) از يك محلول را اندازه گيري مي‌كند بيشترين كاربرد آن در آزمايشگاه، در بخش بيوشيمي است.اساس كار اسپكتروفتومتر همانند بسياري از دستگاه‌هاي آزمايشگاهي، بر اندازه گيري ميزان نور جذب شده توسط يك محلول رنگي است كه طبق قانون بير-لامبرت ميزان جذب نور (OD) متناسب با غلظت ماده حل شده در محلول است.  

روشهای طیف سنجی براساس بر هم کنش تابش الکترومغناطیسی با ماده بنیان گذاری شده است و چون امواج الکترومغناطیس، حاصل کاهش سرعت ذرات با بار الکتریکی است بنابراین توسط ماده جذب شده و سبب افزایش سرعت ذرات می گردد. علاوه بر این انرژی نورانی در بر هم کنش با ماده و جذب آن توسط ماده، باعث برانگیختن ماده به ترازهای انرژی بالاتر می گردد. بنابراین بسته به شدت و قدرت انرژی وارده به ذره با ماده بر هم کنش کرده و پدیده خاصی را سبب می گردد که اساس اندازه گیریهایی نظیر اسپکتروفتومتری را تشکیل می دهد.

كووت كــووت‌هــا مـحـفـظــه‌هــاي شـفــافــي هـستنـد كـه مـحـلـول مـورد آزمـايـش در آن ريـخـتـه شـده و در جايگاه خاص خود كه در مسير نور تكرنگ تعبيه شده است قرار مي‌گيرد. كووت‌ها با توجه به نوع مصرف، جنس، شكل و حجم متفاوتي دارند. براي مـحـلــول‌هــاي اسـيــدي و قـلـيــايـي از كـووت‌هـاي مـخـصوص شيشه‌اي و براي طول موج‌هاي زير 320 نـانـومـتـر از لـولـه كوارتز يا پلاستيك استفاده مي‌شود.

كاليبراسيون كاليبراسيون اسپكتروفتومتر، فرايندي است كه در آن مراحلي جهت تضمين صحت كار دستگاه به‌كار گرفته مي‌شود. اين روش تضمين مي‌كند كه اندازه گيري‌هاي به دست آمده توسط وسيله مورد نـظــر دقـيــق هـسـتـنــد. روش كــالـيـبــراسـيــون بــراي مدل‌هاي مختلف متفاوت است با اين حال اكثر تـولـيـدكـنـنـدگـان كـتـابـچـه راهـنـمـايـي را كـه شـامل جزئيات كاليبراسيون و نحوه كار با دستگاه است، براي استفاده كاربران فراهم مي كنند. اسپكتروفتومتر قادر است تا به عنوان فرستنده و گـيــرنــده نــور عـمـل كنـد. ايـن وسيلـه بـراي آنـاليـز نمونه‌هايي از ماده تست، توسط عبور نور از درون نمونه و خواندن شدت طول موج‌ها مورد استفاده قــرار مــي‌گـيــرد. نـمــونــه‌هــاي مـخـتـلـف نـور را بـه روش‌هـاي مختلـف فشـرده مـي‌كننـد و بـه محقق اجازه مي‌دهند تا توسط بررسي رفتار نور هنگام عبور از نمونه مورد نظر، با ساختار آن بيشتر آشنا شوند. در كاليبراسيون اين وسيله، از يك محلول مرجع جهت تنظيم صفر دستگاه استفاده مي‌شود. 

در اسپكتروفتومتر تك پرتويي، يك پرتو نور توليد و دستگاه بايد بعد از هر بار استفاده، كاليبره شود. در نــوع دو پــرتـويـي، پـرتـوهـا از طـريـق نمـونـه تسـت فرستاده مي‌شوند و نمونه مرجع در همان زمان، دو مجموعه از نتايج را كه مي‌تواند به عنوان مرجع و كـــالــيـبــراسـيــون اسـتـفــاده شــود، تــولـيــد مــي‌كـنــد. كـالـيبراسيون مي‌تواند در آزمايشگاه توسط افراد باتجربه نيز صورت گيرد. البته اگر دستگاه دچار آسيب يا مشكل جدي شود، بايد جهت تعمير و تنظيمات اوليه به كارخانه سازنده يا نمايندگي‌هاي معتبر ارجاع داده شود. 

 1-دستگاه را روشن كنيد و 10 دقيقه منتظر بمانيد تا دستگاه گرم و آماده به كار شود. 2-نور محفظه را تغيير دهيد تا به طول موج مورد نظر برسيد. 3-كووت را تا نيمه با محلول واكنش پر كنيد. كووت نبايد حاوي نمونه ناشناخته باشد. 4-دو طرف كووت را با دستمال پاك كنيد. 5-آن را در مـحـفـظــه قــرار دهـيـد و درب آن را ببنديد. 6-منتظر بمانيد تا اندازه گيري تمام شود.

نحوه كار با اسپكتروفتومتر D 20/20 1-دستگاه را روشن كنيد. اجازه دهيد تا به مدت 15 دقيقه گرم شود.  2-طول موج مورد نظر را با دكمه قرار گرفته در كنار محفظه نمونه تنظيم كنيد. 3-محفظه نمونه را بررسي كنيد تا از خالي بودن آن مطمئن شويد. دكمه مربوط به تنظيم صفر را كه در جـلـو و سـمـت چـپ اسـپـكـتـروفـتـومـتـر اسـت، بچرخانيد تا مقدار صفر را نمايش دهد. 4- براي اطمينان از پاكيزگي و كاهش اشتباه در نتايج اندازه گيري، از دستكش استفاده كنيد. 5- كووت را با آب مقطر پر كنيد و آن را در نگـه دارنـده قـرار دهيد. كووت را به سمت پايين فشار دهيد تا در جاي خود تراز شود. دقت كنيد كه خارج كووت تميز و خشك باشد. 6-دكمه كنترل نور را كه در جلو و سمت راست دستگـاه قـرار دارد، بچـرخانيد تا مقدار عبوري يا جذب را بخواند. 7-سپس كووت نمونه را در محفظه قرار دهيد. مقدار نشان داده شده را ثبت كنيد.

اجزاء و قسمتهای مختلف دستگاه اسپکتروفتومتر 1- منبع نورانی‏‎Light Source 2- عدسی ها: 3- شکافها (slits) 4- منوکروماتور(monochromators) 5- محل نمونه: 6- دتکتور (نور سنج 7- رکوردر (الکتریک سنج)

اجزاء و قسمتهای مختلف دستگاه اسپکتروسکوپ اسپکتروفتومتر از دو بخش اسپکترومتر و فتومتر تشکیل شده است. اسپکترومتر بخشی است که نور منوکروم را ایجاد کرده و دارای منبع نور، عدسی، شکافها، منوکروماتور (صافی، منشور یا ((Grating system) می باشد. بخش فتومتر دارای اسباب سنجش نور می باشد. 1- منبع نورانی: منبع نور مورد استفاده در اسپکتروفتومتر بسته به ناحیه مورد استفاده، متفاوت می باشد. برای نورهای مرئی از لامپ تنگستن استفاده می شود که نورهایی با طول موج بین 350 تا 800 نانومتر ایجاد می کند. و برای نورهای ماوراء بنفش (UV) از لامپ جیوه، هیدروژن استفاده می شود. این لامپها در ناحیه بین 200 تا 600 نانومتر بکار می روند. در دستگاههای پیشرفته تر هر دو نوع لامپ وجود دارد.

2- عدسی ها: (آینه ها): برای کنترل کردن مسیر نور، وجود عدسی لازم است 2- عدسی ها: (آینه ها): برای کنترل کردن مسیر نور، وجود عدسی لازم است. به جای عدسی ها از آینه هایی که به شکل نیمدایره یا محدب ساخته شده اند می توان استفاده نمود. 3- شکافها (slits): در هر اسپکتروفتومتری دو شکاف وجود دارد: یکی را شکاف ورودی و دیگری را خروجی می گویند. شکافها رل مهمی در جداکردن نور دلخواه با طول موج مشخص دارند. به همین جهت اندازه این شکافها بسیار مهم هستند. بیشتر دستگاهها پیچی دارند که اندازه این شکافها را می توان برحسب احتیاج تغییر داد. هر چه طول این شکافها بیشتر باشد پهنای نور عبوری (band-pass) بیشتر بوده و دامنه طول موج آن نیز زیاد می باشد و به عبارت دیگر نورهای دیگری که مورد نیاز نیستند عبور می کنند. این نور اضافی را Stray light می نامند

4- منوکروماتور(monochromators): اشعه نورانی پس از عبور از عدسی ها و شکاف مقدار و مسیر آنها کنترل شده سپس به دستگاهی که می تواند نور پلی کروم را به منوکروم تبدیل کند وارد می شود. پس نوری با طول موج مشخص و انتخابی به وجود می آورند. دو نوع منوکروماتور وجود دارد منشور و Grating. 5- محل نمونه: ظرف محتوی نمونه را سل یا کووت (cuvett) می نامند که از جنس شیشه، کوارتز یا پلاستیک است. برای اندازه گیری شدت رنگ محلولها و بلانک بکار می رود. سلهای شیشه ای و پلاستیکی برای ناحیه مرئی به کار می رود و در ناحیه ماوراء بنفش از سل کوارتز استفاده می شود. طول سلها معمولا 1 سانتی متر است و سلهایی با طول cm 1/0 تا cm 10 نیز موجود می باشد. محل قرار گرفتن نمونه بسته به اینکه دستگاه جایگاه جدا برای رفرنس (بلانک) دارد یا نه، Single beam و Double beam نام دارد.

6- دتکتور (نور سنج): نور پس از عبور از عدسیها و شکافها و منوکروماتور به محلول لوله آزمایش رسیده و از آنجا به نورسنج می رود. اسباب منوکروماتور، نور دلخواه و با طول موج مشخص را به لوله آزمایش می تاباند. رنگ این نور مکمل رنگ محلول است. اگر رنگ محلول سبز- آبی (مثل تعیین مقدار گلوکز بوسیله ارتو تولوییدین) به طول موج nm  495-475 باشد رنگ فیلتر- منشور یا گریتینگ باید نارنجی یا نزدیک آن با طول موج بین nm 620-600 باشد. چون رنگهای نارنجی مکملش سبز-آبی است. بنابراین وقتی منوکروماتور رنگ مکمل رنگ محلول را به لوله آزمایش می تاباند مقداری از آن به وسیله محلولی که در لوله وجود داشته و بستگی به غلظت مواد مورد آزمایش دارد ،جذب شده و بقیه آن به نورسنج می رسد.

نورسنج با تبدیل انرژی نورانی به انرژی الکتریکی قادر است که مقدار جذب این نور را به وسیله محلول و یا درصد ترانس – میتانس آن اندازه گیری نماید. دتکتورها شامل انواع فتوشیمیائی، فتوالکتریکی و حرارتی می باشد که در ناحیه مرئی و ماوراء بنفش از دتکتورهای فتوالکتریکی مانند فتوولتتیک و فتوتیوب و فتومولتی پلایر تیوب استفاده می شود.

7- رکوردر (الکتریک سنج) در اسپکتروفتومتر احتیاج به دستگاهی است که جریان الکتریکی دتکتور را اندازه بگیرد. دو سیستم گالوانومتر و نول پوینت وجود دارد که در اسپکتروفتومترهایی که دارای نواحی مرئی باشند معمولا از یک گالوانومتر یا صفحه دیجیتالی استفاده می شود. دیاگرام زیر، طرح یک اسپکتروفتومتر ساده را نشان می دهد.

اسپکتروفتومتر نشر شعله ‏‎(Flame): ساختمان این دستگاه شبیه اسپکتروفتومتر یا فتومتر ساده است با این تفاوت که در فتومتر، لامپ الکتریکی و در این دستگاه نور حاصل از سوختن ماده مورد آزمایش در درون شعله به عنوان منبع نوری در نظر گرفته می‌شود. در طیف سنجی نشر شعله، نور حاصل مستقیما اندازه‌گیری می‌شود. اسپکتروفتومتر جذب اتمی ‏‎(Atomic Absorption): اسپکتروفتومترهای جذب اتمی ‏‎(AAS)‎‏ غلظت عناصر فلزی که از نظر پزشکی برای حفظ سلامتی مهم است را اندازه گیری می‌کند. در خصوص این عناصر می‌توان به کلسیم، منیزیم، مس، روی و آهن اشاره نمود. اسپکتروفتومترهای جذب اتمی همچنین برای تعیین اینکه آیا سطح درمانی داروهایی نظیر لیتیم در خون، تامین شده است یا خیر و همچنین برای آشکارسازی و تعیین کمیت سموم فلزی مورد استفاده قرار می‌گیرد

قانون کمی جذب یا قانون بیر-لامبرت: این قانون اساس تجزیه کمی در جذب سنجی را تشکیل می دهد.هرگاه یک نور تکفام با شدت I عمد بر سطح تابش دارد که یک محلول همگن و شفاف به ضخامت L و غلظت مولکولی C گردد،قسمتی از آن جذب می شود ( Ia) ،بخشی منعکس ( Ir) ، و قسمت دیگر از محلول عبور می کند و در امتداد شعاع تابش خارج می گردد ( It) بنابراین رابطه ی زیر برقرار است": It + Ia+Ir= Io

XC X 100 جذب نور X= جذب نمونه استاندارد 2-LOG T% =جذب A روش محاسبه XC X 100 جذب نور X= جذب نمونه استاندارد 2-LOG T% =جذب A