The History of the Universe in 60 Minutes

Slides:



Advertisements
Similar presentations
Max Tegmark University of Pennsylvania Max Tegmark University of Pennsylvania MEASURING THE UNIVERSE.
Advertisements

Dark Matter, Dark Energy, and the Current State of Cosmology
Primordial perturbations and precision cosmology from the Cosmic Microwave Background Antony Lewis CITA, University of Toronto
Dark Energy. Conclusions from Hubble’s Law The universe is expanding Space itself is expanding Galaxies are held together by gravity on “small” distance.
What Figure of Merit Should We Use to Evaluate Dark Energy Projects? Yun Wang Yun Wang STScI Dark Energy Symposium STScI Dark Energy Symposium May 6, 2008.
Modern Cosmology: The History of the History of the Universe Alex Drlica-Wagner SASS June 24, 2009.
Universe in a box: simulating formation of cosmic structures Andrey Kravtsov Department of Astronomy & Astrophysics Center for Cosmological Physics (CfCP)
Highlights of Cosmology Physics 114 Spring 2004 – S. Manly References and photo sources: Ned Wright
CMB as a physics laboratory
A cosmology overview Martin White UC Berkeley. Cosmology Physical cosmology –The large-scale properties of space-time –The formation and evolution of.
Lecture 1: Basics of dark energy Shinji Tsujikawa (Tokyo University of Science) ``Welcome to the dark side of the world.”
1 Latest Measurements in Cosmology and their Implications Λ. Περιβολαρόπουλος Φυσικό Τμήμα Παν/μιο Κρήτης και Ινστιτούτο Πυρηνικής Φυσικής Κέντρο Ερευνών.
1 What is the Dark Energy? David Spergel Princeton University.
Primordial density perturbations from the vector fields Mindaugas Karčiauskas in collaboration with Konstantinos Dimopoulos Jacques M. Wagstaff Mindaugas.
Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, 2009 SDSS slideshow.
What can we learn about neutrinos from cosmology? Credit: SDSS team, Andrew Hamilton Blame: Max Tegmark.
The Big Bang: Fact or Fiction? The Big Bang Fact or fiction? Dr Cormac O’Raifeartaigh.
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 SDSS slideshow.
The Dawn of Creation and the Beauty of the Universe Wichita State University April 6, 2010 Steven Beckwith University of California.
Neutrinos in Cosmology Alessandro Melchiorri Universita’ di Roma, “La Sapienza” INFN, Roma-1 NOW-2004, 16th September, 2004.
Quiz 4 Distribution of Grades: No Curve. The Big Bang Hubble expansion law depends on the amount of matter and energy (both are equivalent!) in the Universe;
Cosmology I & II Expanding universe Hot early universe Nucleosynthesis Baryogenesis Cosmic microwave background (CMB) Structure formation Dark matter,
Dark Energy Bengt Gustafsson: Current problems in Astrophysics Lecture 3 Ångström Laboratory, Spring 2010.
Yi Mao, MIT Collaborators: Max Tegmark, Alan Guth, Matias Zaldarriaga, Matt McQuinn, Oliver Zahn, Tom Faulkner, Ted Bunn, Serkan Cabi Constraining cosmological.
TAUP 2007, Sendai, Japan 11/09/07 The Cosmological Model: an overview and an outlook Alan Heavens University of Edinburgh.
Modern State of Cosmology V.N. Lukash Astro Space Centre of Lebedev Physics Institute Cherenkov Conference-2004.
Dark energy I : Observational constraints Shinji Tsujikawa (Tokyo University of Science)
The Current State of Observational Cosmology JPO: Cochin(05/01/04)
Observational Probes of Dark Energy Timothy McKay University of Michigan Department of Physics Observational cosmology: parameters (H 0,  0 ) => evolution.
PREDRAG JOVANOVIĆ AND LUKA Č. POPOVIĆ ASTRONOMICAL OBSERVATORY BELGRADE, SERBIA Gravitational Lensing Statistics and Cosmology.
MAPping the Universe ►Introduction: the birth of a new cosmology ►The cosmic microwave background ►Measuring the CMB ►Results from WMAP ►The future of.
AS2001 Chemical Evolution of the Universe Keith Horne 315a
University of Pennsylvania Licia Verde The cosmic connection From WMAP web site.
Cosmic collisions: dark matter, dark energy & inflation Max Tegmark, Penn/MIT.
How the Universe got its Spots Edmund Bertschinger MIT Department of Physics.
The measurement of q 0 If objects are observed at large distances of known brightness (standard candles), we can measure the amount of deceleration since.
Ignacy Sawicki Université de Genève Understanding Dark Energy.
Cosmic Microwave Background Carlo Baccigalupi, SISSA CMB lectures at TRR33, see the complete program at darkuniverse.uni-hd.de/view/Main/WinterSchoolLecture5.
The Distributions of Baryons in the Universe and the Warm Hot Intergalactic Medium Baryonic budget at z=0 Overall thermal timeline of baryons from z=1000.
The Statistical Properties of Large Scale Structure Alexander Szalay Department of Physics and Astronomy The Johns Hopkins University.
Racah Institute of physics, Hebrew University (Jerusalem, Israel)
More on the A-Word Credit: Anthony Aguirre, Martin Rees, Frank Wilczek Blame: Max Tegmark.
Large-Scale Structure & Surveys Max Tegmark, MIT.
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Measuring cosmological parameters.
The dark side of the Universe: dark energy and dark matter Harutyun Khachatryan Center for Cosmology and Astrophysics.
Cosmology and Dark Matter III: The Formation of Galaxies Jerry Sellwood.
Dark Energy and baryon oscillations Domenico Sapone Université de Genève, Département de Physique théorique In collaboration with: Luca Amendola (INAF,
Cosmology -- the Origin and Structure of the Universe Cosmological Principle – the Universe appears the same from all directions. There is no preferred.
Probing Dark Energy with Cosmological Observations Fan, Zuhui ( 范祖辉 ) Dept. of Astronomy Peking University.
Mapping our Universe for Precision Cosmology Max Tegmark, MIT.
Neutrinos in cosmology Credit: SDSS team, Andrew Hamilton Blame: Max Tegmark.
Cheng Zhao Supervisor: Charling Tao
Cosmology That part of astronomy which deals with the nature of the universe as a whole.
The Nature of Dark Energy David Weinberg Ohio State University Based in part on Kujat, Linn, Scherrer, & Weinberg 2002, ApJ, 572, 1.
Smoke This! The CMB, the Big Bang, Inflation, and WMAP's latest results Spergel et al, 2006, Wilkinson Microwave Anisotropy Probe (WMAP) Three Year results:
Cosmology -- the Origin and Structure of the Universe
Harrison B. Prosper Florida State University YSP
Observational limits on dark energy
Astrophysics II: Cosmology
Recent status of dark energy and beyond
Cosmology with Supernovae
9/17/2018 Cosmology from Space Max Tegmark, MIT.
The Cosmic Microwave Background and the WMAP satellite results
Springel, Frenk & White 2006, Nature, 440, 11
Ch. 14 Cosmology (or “The Whole Enchilada”)
Big Bang.
Cosmology from Large Scale Structure Surveys
Detection of integrated Sachs-Wolfe effect by cross-correlation of the
Measurements of Cosmological Parameters
6-band Survey: ugrizy 320–1050 nm
Presentation transcript:

The History of the Universe in 60 Minutes 11/8/2018 Max Tegmark, MIT

100dpi 11/8/2018

Cosmology timeline: Overduin & Priester 2001, astro-ph/0101484 500 BC 2000 AD Cosmology timeline: 11/8/2018 Overduin & Priester 2001, astro-ph/0101484

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 Cosmology timeline: 11/8/2018 Einstein’s theory of gravity Cluster cosmology Expanding Universe theoretically possible (Friedmann) Universe is expanding (Hubble) Derision cosmology Big Bang Nucleosynthesis (Gamow) Cosmic Microwave Background predicted (Alpher & Herman) Cosmic microwave backgroud anisotropies Supernova cosmology Galaxy redshift surveys Weak gravitational lensing Lyman a forest cosmology 1st quasar discovered (Schmidt) Cosmic Microwave Background detected (Penzias & Wilson) 21 cm cosmology Inflation invented (Guth, Linde, Albrecht & Steinhardt) CfA Galaxy Redshift Survey CMB anisotropies detected (COBE) Dark energy discovered with supernovae (2 teams), CMB peaks detected Weak lensing detected (4 teams) WMAP CMB, SDSS galaxy clustering 2dF galaxy clustering Precision cosmology Planck CMB satellite CMB polarization detected (DASI) CMBPOL satellite? JDEM? JWST? LSST? SKA?

11/8/2018 Flyabout + SDSS movie

(Graphics from Gary Hinshaw/WMAP team) 11/8/2018 (Graphics from Gary Hinshaw/WMAP team)

Fluctuation generator 11/8/2018 Brief History of the Universe Fluctuation generator Fluctuation amplifier Hot Dense Smooth Cool Rarefied Clumpy (Graphics from Gary Hinshaw/WMAP team)

Cosmological functions 11/8/2018 What do we want to measure? Fluctuation generator Fluctuation amplifier Hot Dense Smooth Cool Rarefied Clumpy (Graphics from Gary Hinshaw/WMAP team) Cosmological functions (z), G(z,k), Ps(k), Pt(k)

Cosmological functions 11/8/2018 To 0th order: Fluctuation generator Fluctuation amplifier Hot Dense Smooth H(z) Cool Rarefied Clumpy (Graphics from Gary Hinshaw/WMAP team) Cosmological functions (z), G(z,k), Ps(k), Pt(k)

Cosmological functions 11/8/2018 To 1st order: Fluctuation generator Fluctuation amplifier Hot Dense Smooth H(z) P(k,z) Cool Rarefied Clumpy (Graphics from Gary Hinshaw/WMAP team) Cosmological functions

11/8/2018 MATTER BUDGET (Q) INITIAL CONDITIONS

11/8/2018 OUR TOOLS

Smorgasbord 11/8/2018

11/8/2018 Measuring expansion

Arthur Geoffrey Walker 1909-? 11/8/2018 Arthur Geoffrey Walker 1909-? (British; 1935 paper with H P Robertson showed that F(L)RW metric is only homogeneous & isotropic metric) Alexander Friedmann 1888-1925 (Russian; 1922 paper) George Lemaître 1894-1936 (Belgian; indep. 1927 paper)

Cosmic scale factor a(t) 11/8/2018 Cosmic scale factor a(t) t [Gigayears]

The Universe is expanding: H>0 today v≈Hr for v«c 11/8/2018 The Universe is expanding: H>0 today v≈Hr for v«c

11/8/2018

Edwin Hubble 1889- (American; 1930 paper) Mt. Wilson Observatory 1931 11/8/2018 Edwin Hubble 1889- (American; 1930 paper) Mt. Wilson Observatory 1931

How measure distance & redshift? 11/8/2018 Hubble 1929: H550 km/s/Mpc Riess et al 1996: H70 km/s/Mpc How measure distance & redshift?

11/8/2018

Cosmic scale factor a(t) 11/8/2018 Cosmic scale factor a(t) t [Gigayears]

Standardizable candles Boom zoom Standardizable candles 11/8/2018 (From Saul Perlmutter’s web site)

Using galaxy correlations as a standardizable ruler: Boom zoom Using galaxy correlations as a standardizable ruler: 11/8/2018 (Eisenstein, Hu & MT 1998; Eisenstein et al 2005; Cole et al 2005) Easiest to understand in real space (Bashinsky & Bertschinger, PRL, 87, 1301, 2001; PRD 123008, 2002)

We’ve measured distance to z=0.35 to 5% accuracy Boom zoom 11/8/2018 (Eisenstein et al 2005, for the SDSS collaboration astro-ph/050112) We’ve measured distance to z=0.35 to 5% accuracy

Big Bang nucleosynthesis as a standardizable clock: 11/8/2018 Tytler et al 2000, astro-ph/0001318

H = dlna/dt, H2   Assumes k=0 SN Ia+CMB+LSS constraints 11/8/2018 H = dlna/dt, H2   Assumes k=0 SN Ia+CMB+LSS constraints Yun Wang & MT 2004, PRL 92, 241302

11/8/2018 Measuring clustering

History 11/8/2018 CMB Foreground-cleaned WMAP map from Tegmark, de Oliveira-Costa & Hamilton, astro-ph/0302496

Boom zoom 11/8/2018 z = 1000

Boom zoom 11/8/2018 z = 2.4 Mathis, Lemson, Springel, Kauffmann, White & Dekel 2001

Boom zoom 11/8/2018 z = 0.8 Mathis, Lemson, Springel, Kauffmann, White & Dekel 2001

Boom zoom 11/8/2018 z = 0 Mathis, Lemson, Springel, Kauffmann, White & Dekel 2001

CMB LSS Lya 1par movies Lensing Clusters 11/8/2018 CMB Clusters LSS Lensing Lya Tegmark & Zaldarriaga, astro-ph/0207047 + updates

Cmbgg OmOl 11/8/2018

CMB LSS Lya 1par movies Lensing Clusters 11/8/2018 CMB Clusters LSS Lensing Lya Tegmark & Zaldarriaga, astro-ph/0207047 + updates

000619 Galaxy power spectrum measurements 1999 11/8/2018 Galaxy power spectrum measurements 1999 (Based on compilation by Michael Vogeley)

1par movies 11/8/2018 LSS

LSS 1par movies Clusters 11/8/2018 Clusters LSS Tegmark & Zaldarriaga, astro-ph/0207047 + updates

CMB LSS 1par movies Clusters 11/8/2018 CMB Clusters LSS Tegmark & Zaldarriaga, astro-ph/0207047 + updates

History 11/8/2018 (Figure from Wayne Hu) (Figure from WMAP team)

History 11/8/2018

History 11/8/2018 CMB Foreground-cleaned WMAP map from Tegmark, de Oliveira-Costa & Hamilton, astro-ph/0302496

Boom zoom 11/8/2018 Guth & Kaiser 2005, Science

CMB LSS 1par movies Clusters 11/8/2018 CMB Clusters LSS Tegmark & Zaldarriaga, astro-ph/0207047 + updates

CMB LSS Ly 1par movies Clusters 11/8/2018 CMB Clusters LSS Ly Tegmark & Zaldarriaga, astro-ph/0207047 + updates

LyF Boom zoom Quasar You Lyman Alpha Forest Simulation: Cen et al 2001 11/8/2018 LyF Quasar You

CMB LSS Ly 1par movies Clusters 11/8/2018 CMB Clusters LSS Ly Tegmark & Zaldarriaga, astro-ph/0207047 + updates

CMB LSS Ly 1par movies Lensing Clusters 11/8/2018 CMB Clusters LSS Lensing Ly Tegmark & Zaldarriaga, astro-ph/0207047 + updates

GRAVITATIONAL LENSING: 11/8/2018 GRAVITATIONAL LENSING: A1689 imaged by Hubble ACS, Broadhurst et al 2004

distortion 11/8/2018 Lensing

CMB LSS Ly 1par movies Lensing Clusters 11/8/2018 CMB Clusters LSS Lensing Ly Tegmark & Zaldarriaga, astro-ph/0207047 + updates

000619 Galaxy power spectrum measurements 1999 11/8/2018 Galaxy power spectrum measurements 1999 (Based on compilation by Michael Vogeley)

CMB LSS Lya 1par movies Lensing Clusters 11/8/2018 CMB Clusters LSS Lensing Lya Tegmark & Zaldarriaga, astro-ph/0207047 + updates

But the best is yet to come… 11/8/2018 But the best is yet to come…

11/8/2018 Measuring cosmological parameters

Cosmological parameter movies available at 11/8/2018 Cosmological parameter movies available at http://space.mit.edu/home/tegmark/movies.html

Why are we cosmologists so excited? Cmbgg OmOl How much dark matter is there? 11/8/2018 b /(1.878810-26 kg m3) Why are we cosmologists so excited? =d /(1.878810-26 kg m3)

How much dark matter is there? Cmbgg OmOl How much dark matter is there? 11/8/2018 b /(1.878810-26 kg m3) =d /(1.878810-26 kg m3)

How much dark matter is there? Cmbgg OmOl How much dark matter is there? 11/8/2018 b /(1.878810-26 kg m3) Ruled out by CMB 2000 (COBE, Boomerang, MAXIMA, etc) =d /(1.878810-26 kg m3)

CMB How much dark matter is there? Cmbgg OmOl b /(1.878810-26 kg m3) 11/8/2018 CMB b /(1.878810-26 kg m3) =d /(1.878810-26 kg m3)

+ CMB P(k) How much dark matter is there? Cmbgg OmOl 11/8/2018 CMB + b /(1.878810-26 kg m3) P(k) =d /(1.878810-26 kg m3)

+ + CMB P(k) LyF How much dark matter is there? Cmbgg OmOl 11/8/2018 CMB + b /(1.878810-26 kg m3) P(k) + LyF SDSS LyaF analysis lead by Pat McDonald, Uros Seljak, Scott Burles & co

Cmbgg OmOl 11/8/2018 CMB

Cmbgg OmOl 11/8/2018

Cmbgg OmOl 11/8/2018 CMB + LSS

Cmbgg OmOl 11/8/2018

11/8/2018 MATTER BUDGET (Q) INITIAL CONDITIONS

Cosmological Parameters 11/8/2018 Cosmological data Cosmological Parameters

Cosmological Parameters 11/8/2018 Cosmological data Cosmological Parameters ARE WE DONE?

Cosmological Parameters 11/8/2018 Cosmological data Cosmological Parameters Why these particular values? Nature of dark matter? ? Fundamental theory Nature of dark energy? Nature of early Universe?

MATTER BUDGET (Q) INITIAL CONDITIONS

Inflation! (Q) Baryogenesis SUSY? -physics WHY?

Standard model parameters: Why these values? Standard model parameters:

Cosmological functions 11/8/2018 Cosmological data H(z), P(k,z), ClT , ClX , ClE , ClB ,… Cosmological functions All vanilla? (z), G(z,k), Ps(k), Pt(k)

Cosmological functions 11/8/2018 Cosmological data H(z), P(k,z), ClT , ClX , ClE , ClB ,… Cosmological functions All vanilla? (z), G(z,k), Ps(k), Pt(k) Non-vanilla clustering? Make at LHC? Detect directly? Indirectly? Non-constant density? Clustering? Clues about Dark matter Dark energy Inflation Non-scale invariance? Gravitational waves? Non-Gaussianity? Isocurvature modes? Non-flatness?

Cosmological functions 11/8/2018 Cosmological data H(z), P(k,z), ClT , ClX , ClE , ClB ,… Cosmological functions All vanilla? (z), G(z,k), Ps(k), Pt(k) Non-vanilla clustering? Make at LHC? Detect directly? Indirectly? Non-constant density? Clustering? Clues about Dark matter Dark energy Inflation Non-scale invariance? Gravitational waves? Non-Gaussianity? Isocurvature modes? Non-flatness? c,  Q

DARK ENERGY: w(z) =-1, w’=w’’=…=0 No dark energy clustering Boom zoom 11/8/2018 DARK ENERGY: w(z) =-1, w’=w’’=…=0 No dark energy clustering Dark energy density 0 1 2 Redshift z

DARK MATTER: Boom zoom 0 1 2 Redshift z No direct detection 11/8/2018 DARK MATTER: No direct detection No indirect detection No accelerator detection No astrophysically observed departures from vanilla CDM Growth factor (obs/theo) 0 1 2 Redshift z

INFLATION: Boom zoom Wavenumber k [1/Mpc] 11/8/2018 INFLATION: No departures from scale invariance detected (n=1, dn/dlnk=0, etc) No gravity waves detected No non-Gaussianity detected No isocurvature detected Primordial power spectrum P*(k)/k Wavenumber k [1/Mpc]

11/8/2018