Warm-Up . 4. Find the average and standard deviation of the following data set: 12, 13, 14 20, 25, 25, 32,27 5. Draw the normal for question 2 6. Use the information from question two to find the z-score when the value compared is 30
Piecewise Functions
Evaluating Piecewise Functions Piecewise functions are functions defined by at least two equations, each of which applies to a different part of the domain A piecewise function looks like this: Domain restrictions Equations
Steps to Evaluate Piecewise Functions Look at the domain to see which equation to use Plug in x-value Solve!
One equation gives the value of f(x) when x ≤ 1 And the other when x>1
Evaluate f(x) when x=0, x=2, x=4 First you have to figure out which equation to use You NEVER use both X=4 X=2 X=0 This one fits Into the top equation So: 0+2=2 f(0)=2 So: 2(4) + 1 = 9 f(4) = 9 This one fits here So: 2(2) + 1 = 5 f(2) = 5 This one fits here
Graph: For all x’s < 1, use the top graph (to the left of 1) For all x’s ≥ 1, use the bottom graph (to the right of 1)
x=1 is the breaking point of the graph. To the left is the top equation. To the right is the bottom equation.
Graph: Point of Discontinuity