Leslie M Shaw Perelman School of Medicine University of Pennsylvania

Slides:



Advertisements
Similar presentations
The Australian Imaging Biomarkers and Lifestyle Flagship Study of Ageing AUSTRALIAN ADNI. July 2010 UPDATE.
Advertisements

ADNI Biomarker Core Leslie M Shaw John Q Trojanowski ICAD, Honolulu July 10, 2010.
December, NEED FOR VALIDATED BIOMARKERS FOR AD TRIALS Biomarkers useful in Phase 2 to make decisions about Phase 3 (e.g. doses) Biomarkers useful.
ADNI PiB Amyloid Imaging Chet Mathis University of Pittsburgh.
Alzheimer’s Disease Neuroimaging Initiative Neuropathology Core John C. Morris, MD Nigel J. Cairns, PhD, FRCPath Erin Householder, MS.
ADNI Biomarker Core Report
Disclosures/Conflicts Consulting: GE Healthcare Bayer Abbott Elan/Janssen Synarc Genentech Merck.
Alzheimer’s Disease Neuroimaging Initiative STEERING COMMITTEE April
ADNI 3 Clinical Core Plans
CSF tau Is it an informative biomarker of AD pathology Chris Clark Alzheimer’s Disease Center University of Pennsylvania.
CSF sulfatide is decreased in individuals with incipient dementia Xianlin Han, PhD, Anne M. Fagan, PhD, Hua Cheng, MS, John C. Morris, MD, Chengjie Xiong,
Mapping the correlations between CSF Abeta and tau and hippocampal atrophy in 282 ADNI subjects Liana G. Apostolova, Amity E. Green, Kristy S. Hwang, Jonathan.
©2012 MFMER | ADNI Clinical Core Paul Aisen Ron Petersen Michael Donohue Jennifer Salazar.
COST CM1103 Training School Structure-based drug design for diagnosis and treatment of neurological diseases Istanbul, 9-13 Sept 2013 Mirjana Babić, mag.biol.mol.
1 Global Biomarker Standardization Consortium: CSF Reference Method Sub-group Chairs: Kaj Blennow & Henrik Zetterberg.
©2012 MFMER | ADNI Clinical Core Paul Aisen Ron Petersen Michael Donohue Jennifer Salazar WW ADNI Washington, DC July 17, 2015.
©2012 MFMER | ADNI Clinical Core Paul Aisen Ron Petersen Michael Donohue Jennifer Salazar ADNI Steering Committee Meeting Washington, DC April.
Lymph Node (LN) Ratio (LNR) Based Risk Classification (RC) in Stage III Colon Cancer (CC) with Internal and External Validation: Finding from the ACCENT.
Apolipoprotein E and Gray Matter Loss in Mild Cognitive Impairment and Alzheimer’s Disease Spampinato MV, Goldsberry G, Mintzer J, Rumboldt Z Medical University.
ADNI Biomarker Core Leslie M Shaw & John Q Trojanowski Magdalena Korecka Michal Figurski Teresa Waligorska Magdalena Brylska Leona Fields Nirali Shah.
ADNI PPSB Update WW ADNI Meeting 22 July, An Eventful Year… Successful renewal of ADNI (ADNI-3) PPSB had an opportunity to contribute – PPSB/Biomarker.
Value of cerebrospinal fluid visinin-like protein-1 (VILIP-1) for prediction of mild cognitive impairment progression to Alzheimer's disease  Mirjana Babić.
Update on the Alzheimer’s Association Quality Control (QC) program
a cautionary note from SPRINT
The Alzheimer’s Association QC program for CSF biomarkers
a cautionary note from SPRINT
Arg-ADNI Patients’ Flowchart Patients Invited to ADNI Nº= 73
Biomarker Core WWADNI report
Alzheimer’s Disease Neuroimaging Initiative 3 (ADNI 3)
Jen Yates, Linda Clare, Bob Woods and CFAS Wales
CSF Round Robin Program
Leslie M Shaw and John Q Trojanowski, UPenn
Anastasiia Raievska (Veramed)
Use of Amyloid PET Scan in Early Diagnosis of Alzheimer’s Disease in a Secondary Care Memory Clinic Niki Schoonenboom, MD PhD1, Mohammed Akarriou, MD2;
Mayo Clinic College of Medicine
A neurobiological model of memory impairment in late-life major depressive disorder Davide Bruno1, Jay Nierenberg2, Michel Grothe3, Domenico Pratico’ 4,
2017 Update on the Alzheimer’s Association
IRMM/IFCC Project Overview
39 DEVELOPED HCC by EASL criteria
Table 2. Data Sharing for (Reporting Period)
Volume 2, Issue 1, Pages (January 2016)
Early diagnosis of mild cognitive impairment and Alzheimer's disease based on salivary lactoferrin  Eva Carro, Fernando Bartolomé, Félix Bermejo-Pareja,
Imaging AD Progression Amyloid Imaging Agents.
Biomarker Core ADNI Steering Committee Boston, MA 4/24/2017
Appropriate Use Criteria for Lumbar Puncture and Cerebrospinal Fluid Analysis in the Diagnosis of Alzheimer’s Disease Leslie M Shaw Department of Pathology.
PPMI in the Medical Literature
Alzheimer’s Association CSF Pre-Analytical Consensus Protocol
PPMI Beyond 2018.
Repositories Lunch Meeting, Day 1
Blood-Based Biomarkers in the QC Program?
Annals of Internal Medicine • Vol. 167 No. 12 • 19 December 2017
Biomarker Core WWADNI report
ADNI Biomarker Core update
ADNI Clinical Core Paul Aisen Ron Petersen Michael Donohue
Ron Petersen & Paul Aisen
AAIC 2018 Biomarker Rates of Change in Autosomal Dominant Versus “Sporadic” Alzheimer Disease John C. Morris, MD On behalf of MW Weiner, L Beckett, T.
Volume 16, Issue 8, Pages (August 2017)
Does Multilingualism Protect Against Alzheimer’s Disease
Alzheimer’s Disease Neuroimaging Initiative 3 (ADNI 3)
Boston Naming Test predicts deterioration of cerebrospinal fluid biomarkers in pre-symptomatic Alzheimer’s disease Charleen Wilder, MA, Kristina Moncrieffe,
Tharick A. Pascoal, Sulantha Mathotaarachchi, Monica Shin, Andrea L
Figure 2 Comparison between noncarriers (−) and carriers (+) of the minor allele of rs (CYP2C19)‏ Comparison between noncarriers (−) and carriers.
Clifford R. Jack, Heather J. Wiste, Stephen D. Weigand, Terry M
Figure 1 Flortaucipir PET MUBADA/PERSI SUVr at baseline, 9 and 18 months for individual subjects. Each subject is ... Figure 1 Flortaucipir PET MUBADA/PERSI.
ADNI 3 UPDATE MICHAEL WEINER.
Columbia University Medical Center
Volume 16, Issue 8, Pages (August 2017)
Suzanne E. Schindler, Julia D. Gray, Brian A
Figure 1 NMF in ADD patients and classification of prodromal Alzheimer’s disease participants. Grey matter ... Figure 1 NMF in ADD patients and classification.
CSF biomarkers of Alzheimer's disease concord with amyloid-β PET and predict clinical progression: A study of fully automated immunoassays in BioFINDER.
Presentation transcript:

Leslie M Shaw Perelman School of Medicine University of Pennsylvania Predictive Performance of CSF Ab1-42 and Tau for Cognitive Decline and Progression to Dementia Leslie M Shaw Perelman School of Medicine University of Pennsylvania

Analysis of 2401 ADNI1/GO/2 CSF samples 2401 (1221 BASELINE + 1180 longitudinal) ADNI pristine CSFs, collected from 9/7/2005 to 7/25/2016 were analyzed in 36 analytical runs at UPenn from 11-17-2016 to 1-20-2017: ADNI Phase HC SMC EMCI LMCI AD 1221 BASELINE ADNI CSFs ADNI 1 112 -- 192 98 ADNIGO/2 160 96 277 154 132

Analyses of ADNI1/GO/2 CSF Ab1-42, t-tau, p-tau181 using the Roche Elecsys fully automated immunoassay platform At our previous ADNI meeting the following were described. Rationale for moving from RUO to full automation Validation of Ab1-42 for precision, accuracy, and clinical performance General statistics for Ab1-42, t-tau, p-tau181, t-tau/Ab1-42, p-tau181/Ab1-42 in the ADNI1/GO/2 CSF samples Histogram distributions for Ab1-42, t-tau/Ab1-42, p-tau181 Distributions based on FBP amyloid-b PET + or – Cutpoint determinations Collaborative study with BioFINDER Concordance with FBP amyloid-b PET Prediction of cognitive decline(CDRsob) Assessments of the contribution of CSF t-tau and p-tau181 to the clinical utility of CSF Ab1-42

ADNI1 BASELINE CSF Ab1-42, t-tau, p-tau181& ratios t-tau/Ab1-42 p-tau181/Ab1-42 % e4+ (pg/mL) AD 70.4 Median 558 349 34 0.61 0.063 N=98 mean±SD 659±375 359±130 36±15 0.64±0.29 0.065±0.033 95% CI 306-1663 154-687 13-73 0.15-1.40 0.012-0.14 MCI 54.1 658 294 28 0.48 0.048 N=192 mean±SD 846±482 312±124 31±14 0.51±0.30 0.049±0.033 293-2041 140-599 12-63 0.12-1.13 0.010-0.13 NC 24.1 1239 218 20 0.18 0.015 N=111 mean±SD 1246±647 239±84 22±9 0.27±0.18 0.023±0.018 401-2742 112-444 11-43 0.11-0.73 0.0089-0.075

ADNIGO/2 CSF BASELINE Ab1-42, t-tau, p-tau181 & ratios t-tau/Ab1-42 p-tau181/Ab1-42 % e4+ (pg/mL) AD Median 594 334 33 0.57 0.058 66.7 N=132 mean±SD 649±257 375±155 37±16 0.62±0.33 0.062±0.034 95% CI 309-1375 170-750 15-76 0.14-1.41 0.012-0.15 LMCI Median 793 286 28 0.39 0.037 57.1 N=154 mean±SD 936±494 308±136 30±15 0.41±0.25 0.041±0.023 342-2275 115-577 10-63 0.1-0.98 0.0078-0.099 EMCI Median 1052 234 20 0.20 0.017 42.2 N=277 mean±SD 1178±588 256±122 24±14 0.29±0.25 0.028±0.028 395-2431 117-582 10-67 0.09-0.94 0.0077-0.103 SMC Median 1324 218 19 0.15 0.013 34.4 N=96 mean±SD 1364±612 241±94 22±10 0.22±0.15 0.020±0.015 466-2691 107-462 10-49 0.09-0.62 0.0081-0.0653 NC Median 1285 211 26.9 N=160 mean±SD 1384±667 238±92 22±9 0.22±0.16 0.021-0.028 421-2697 110-469 10-48 0.09-0.68 0.0076-0.0698

Ab1-42 all values 1239 1285 1324 1052 793* 658 594 558 Numbers inside the boxes are the respective median values for BL Ab1-42 in pg/mL placed above the median value horizontal line. *p<0.005 for LMCI ADNIGO+2 vs ADNI1; p=0.11 for NL ADNIGO+2 vs ADNI1; p=0.23 for AD ADNIGO+2 vs ADNI1

t-tau 349 334 294 286 218 211 218 234 Numbers inside the boxes are the respective median values for BL t-tau in pg/mL placed above the median value horizontal line. P=0.81 for NL ADNIGO+2 vs ADNI1; p=0.51 for MCI ADNIGO+2 vs ADNI1; p=0.81 for AD ADNIGO+2 vs ADNI1

p-tau181 34.0 33.2 28.4 27.6 20.0 19.9 19.3 19.3 Numbers inside the boxes are the respective median values for p-tau181 in pg/mL placed above the median value horizontal line. *p=0.71 for ADNIGO+2 vs ADNI1; p=0.43 for MCI ADNIGO+2 vs ADNI1; p=0.88 for AD ADNIGO+2 vs ADNI1.

ROC Curves for SMC+EMCI+LMCI+AD CSF biomarkers using FBP PET+/- as the clinical endpoint In the ADNI study* AUC values: Sens Spec Eff p-tau/Ab1-42 0.944 91.3% 88.5% 90.2% t-tau/Ab1-42 0.940 91.6% 87.4% 89.9% Ab1-42 0.889 86.7% 81.7% 84.6% p-tau181 0.845 79.9% 74.8% 77.8% t-tau 0.803 74.0% 72.9% 73.5% Cutpoint values: p-tau/Ab1-42 0.021 t-tau/Ab1-42 0.222 Ab1-42 980 pg/mL p-tau181 21.8 pg/mL t-tau 245 pg/mL 2017 ADNI dataset included in the collaboration with the Swedish BioFINDER study *SUVR of 1.1 used: Landau and Jagust

Frequency distribution plots: upper are mixture model plots, lower are FBP+ and FBP- for ADNI SMC/EMCI/LMCI/AD ptau181/Ab1-42 Ab1-42 tau/Ab1-42

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa Frequency distribution plots: upper simple frequency plots, lower are FBP+ and FBP- for ADNI SMC/EMCI/LMCI/AD aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa tau p-tau181 FBP- FBP+ FBP- FBP+

Analyses of ADNI1/GO/2 CSF Ab1-42, t-tau, p-tau181 using the Roche Elecsys fully automated immunoassay platform In order to further address the question of what do CSF t-tau and p-tau181 add to the clinical utilities of CSF Ab1-42 we describe the following analyses for the ADNIGO/2 EMCI+MCI participants: Stratify into 4 sub-groups using Ab42 and either t-tau or p-tau181 Amyloid plaque burden +/- represented by Ab42+ or – : [Ab+ or Ab-] Tau pathology +/- represented by t-tau+ or - : [tau+ or tau-] or by p-tau181+ or - : [p-tau+ or p-tau-] Use the cut-points described in the previous ppt to determine + or – for each biomarker. Test the hypothesis that having both Ab+ & tau+ [ie, Ab+/tau+ or Ab+/p-tau+] is associated with much greater rates of cognitive, functional and memory decline as compared to having only one of the two pathologic states [ie, Ab+/tau- or Ab-/tau+]. Test the hypothesis that the least cognitive decline is associated with both classes of CSF biomarker being negative. Test this also for risk for progression from a diagnosis of MCI to a diagnosis of AD dementia.

Rates of clinical decline as a function of Ab42 and t-tau in ADNIGO/2 EMCI+LMCI CDRsob FAQ Ab+/tau+ Ab+/tau+ Ab+/tau+ MMSE CDRsob N 2 yr change Compare to Ab-/tau- Δ 2yrs Ab-/tau- 124 -0.022 -- Ab-/tau+ 42 0.048 0.070 Ab+/tau- 76 0.428 0.450 Ab+/tau+ 112 1.606 1.628 FAQ N 2 yr change Compare to Ab-/tau- Δ 2yrs Ab-/tau- 124 0.664 -- Ab-/tau+ 42 0.406 -0.158 Ab+/tau- 76 1.422 0.758 Ab+/tau+ 112 4.052 3.388 MMSE N 2 yr change Compare to Ab-/tau- Δ 2yrs Ab-/tau- 124 -0.130 -- Ab-/tau+ 42 -0.404 -0.274 Ab+/tau- 76 -0.784 -0.654 Ab+/tau+ 112 -2.410 -2.280

Rates of clinical decline as a function of Ab42 and p-tau181 in ADNIGO/2 EMCI+LMCI CDRsob FAQ Ab+/p-tau+ Ab+/p-tau+ Ab+/p-tau+ MMSE CDRsob N 2 yr change Compare to Ab-/ptau- Δ 2yrs Ab-/ptau- 124 0.036 -- Ab-/ptau+ 42 -0.116 -0.080 Ab+/ptau- 76 0.358 0.322 Ab+/ptau+ 112 1.552 1.516 FAQ N 2 yr change Compare to Ab-/ptau- Δ 2yrs Ab-/ptau- 124 0.654 -- Ab-/ptau+ 42 0.534 -0.120 Ab+/ptau- 76 1.366 0.712 Ab+/ptau+ 112 3.890 3.236 MMSE N 2 yr change Compare to Ab-/ptau- Δ 2yrs Ab-/ptau- 124 -0.136 -- Ab-/ptau+ 42 -0.312 -0.176 Ab+/ptau- 76 -0.804 -0.668 Ab+/ptau+ 112 -2.280 -2.144

Characteristics of ADNIGO/2 E+LMCI for the study of Ab42/p-tau181 combinations 139 60 87 145 APOE e4, N(%) 30(22%) 21(35%) 45(52%) 109(75%) Education, yrs 16.3±2.6 16.2±2.4 16.1±2.7 16.2±2.7 Ab42, pg/mL 1557±413 1612±618 689±176 672±159 p-tau181, pg/mL 16.4±3.8 33.1±13.3 16.4±4.4 39.1±13.8 t-tau, pg/mL 191±44 350±111 178±43 382±124 tau/Ab42 0.13±0.03 0.25±0.14 0.28±0.12 0.60±0.25 p-tau/Ab42 0.011±0.0028 0.024±0.016 0.026±0.012 0.061±0.028 # progressors 5 11 56 # non-progressors 114 48 59 68 Drop-outs 20 7 17 21

Characteristics of ADNIGO/2 E+LMCI for the study of Ab42/t-tau combinations 154 45 116 APOE e4, N(%) 34(22%) 17(38%) 64(55%) 90(78%) Education, yrs 16.2±2.6 16.3±2.4 16.2±2.8 16.1±2.7 Ab42, pg/mL 1578±433 1559±631 666±173 692±157 p-tau181, pg/mL 17.2±4.4 36.9±14.3 18.8±5.7 42.4±13.5 t-tau, pg/mL 198±48 378±115 197±51 414±119 tau/Ab42 0.13±0.04 0.28±0.14 0.33±0.14 0.64±0.26 p-tau/Ab42 0.011±0.0034 0.027±0.017 0.031±0.015 0.065±0.029 Progressors 6 4 18 49 Non-progressors 127 35 74 53 Drop-outs 21 24 14

Cox proportional-hazards analyses: comparisons across CSF t-tau (+ or –) combined with Ab42 (+ or -) Hazard ratios: Ab42-/t-tau+ 1.68(0.627 -- 4.50) Ab42+/t-tau- 2.80(1.17 -- 6.67) Ab42+/t-tau+ 9.23(4.15 -- 20.5) Cox proportional hazards models adjusted for gender, age, education years and APOE e4 allele #.

Cox proportional-hazards analyses: comparisons across CSF p-tau181 (+ or –) combined with Ab42 (+ or -) Hazard ratios: Ab42-/p-tau+ 1.41(0.521 -- 3.79) Ab42+/p-tau- 2.46(1.04 -- 5.84) Ab42+/p-tau+ 7.85(3.67 -- 16.8) Cox proportional hazards models adjusted for gender, age, education years and APOE e4 allele #.

ACKNOWLEDGEMENTS Supported by the NIH/NIA & families of our patients Biomarker Research Lab Magdalena Korecka Michal Figurski Magdalena Brylska Teresa Waligorska Leona Fields Jacob Alexander Ju Hee Kang CNDR/ADRC John Trojanowski Virginia M-Y Lee Steve Arnold David Irwin Murray Grossman Jon Toledo Alice Chen-Plotkin William Hu Anne Fagan Hugo Vanderstichele Kaj Blennow Henrik Zetterberg Douglas Galasko Chris Clark* Manu Vandijck John Lawson Udo Eichenlaub Tobias Bittner The Roche team *Deceased Robert Dean Holly Soares Adam Simon Eric Siemers Piotr Lewczuk William Potter Rand Jenkins Erin Chambers Supported by the NIH/NIA & families of our patients MJ Fox Fdn for PD research ADNI investigators include: (complete listing available at www.loni.usc.edu\ADNI\ Collaboration\ADNI_Manuscript_Citations.pdf