CST simulations of VMTSA

Slides:



Advertisements
Similar presentations
RF Modeling efforts on Ion Source at SNS Sung-Woo Lee.
Advertisements

D. Lipka, MDI, DESY Hamburg, July 2012 Simulation of fields around spring and cathode for photogun D. Lipka, MDI, DESY Hamburg.
Update on SPS BPM impedance B. Salvant for the 2008 impedance team.
Performance of the DZero Layer 0 Detector Marvin Johnson For the DZero Silicon Group.
RF contact non conformities in LHC interconnects: Impedance aspects N. Mounet, B. Salvant With the help of: Gianluigi Arduini, Vincent Baglin, Serge Claudet,
TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012.
RFQ Thermal Analysis Scott Lawrie. Vacuum Pump Flange Vacuum Flange Coolant Manifold Cooling Pockets Milled Into Vanes Potentially Bolted Together Tuner.
Impedance aspects of Crab cavities R. Calaga, N. Mounet, B. Salvant, E. Shaposhnikova Many thanks to F. Galleazzi, E. Metral, A. Mc Pherson, C. Zannini.
Acknowledgements F. Caspers, H. Damerau, M. Hourican, S.Gilardoni, M. Giovannozzi, E. Métral, M. Migliorati, B. Salvant Dummy septum impedance measurements.
Update of the SPS transverse impedance model Benoit for the impedance team.
Higher-Order Modes and Beam-Loading Compensation in CLIC Main Linac Oleksiy Kononenko BE/RF, CERN CLIC RF Structure Development Meeting, March 14, 2012.
Update on BGV impedance studies Alexej Grudiev, Berengere Luthi, Benoit Salvant for the impedance team Many thanks to Bernd Dehning, Massimiliano Ferro-Luzzi,
Update on wire scanner impedance studies
Simulation of trapped modes in LHC collimator A.Grudiev.
TDI impedance and power loss O. Aberle, F. Caspers, A. Grudiev, E. Metral, N. Mounet, B. Salvant.
2 nd harmonic RF perpendicular biased cavity update C.Y. Tan, W. Pellico, G. Romanov, R. Madrak, and D. Wildman 02 Apr 2014.
First results of calculation of wakefields for the LHCb experimental chamber. Rainer Wanzenberg, Olga Zagorodnova Desy Hamburg February 2, 2015.
Update on TCTP heating H. Day, B. Salvant Acknowledgments: L. Gentini and the EN-MME team.
29/04/03 F. Caspers (CERN):Chopper development evolution IPHI-SPL meeting April   Brief review of present status   Why to consider an alternative.
D. Lipka, V. Vogel, DESY Hamburg, Germany, Oct Optimization cathode design with gun5 D. Lipka, V. Vogel, DESY Hamburg, Germany.
1 Update on the impedance of the SPS kickers E. Métral, G. Rumolo, B. Salvant, C. Zannini SPS impedance meeting - Oct. 16 th 2009 Acknowledgments: F. Caspers,
Update on new triplet beam screen impedance B. Salvant, N. Wang, C. Zannini 7 th December 2015 Acknowledgments: N. Biancacci, R. de Maria, E. Métral, N.
TESLA DAMPING RING RF DEFLECTORS DESIGN F.Marcellini & D. Alesini.
August 21st 2013 BE-ABP Bérengère Lüthi – Summer Student 2013
Longitudinal impedance of new RF fingers O. Berrig, C. Garion, B. Salvant.
Status of work on the HOM coupler. 2 nd Harmonic cavity Meeting 11/II-2016 Thermal analyses with shims (Y.Terechkine). Gennady Romanov On behalf of Y.Terechkine.
Update on the TDI impedance simulations and RF heating for HL- LHC beams Alexej Grudiev on behalf of the impedance team TDI re-design meeting 30/10/2012.
Multipacting Simulation for the PITZ RF Photo Gun Igor Isaev Unwanted Beam Workshop 2012 Humboldt-University Berlin, The PITZ RF Photo Gun.
Recent Progress Haisheng Xu. Outline Check the calculation of wake potential (together with Paolo) – Analytical method – PyHEADTAIL – mbtrack – elegant.
Magnet and ferrites tests Luciano Elementi Mu2e Extinction Technical Design Review 2 November 2015.
Designing a Continuous-Wave RF Cavity for Bunch Rotation in Support of Experiments Mu2e and g-2 Aaron Smith under the mentorship of Joseph Dey Accelerator.
F. Caspers, A. Grudiev, E. Métral, B. Salvant
Experience with CST Eigenmode Solver for the LHCb Velo Upgrade Project
Interpretation of resonant wire measurements on the TCSPM
Outcome of recent impedance bench measurements on collimators
Finemet cavity impedance studies
Simulation of 200 MHz RF cavities. 11 cells preliminary results
FEA Analysis of the LHCB Velo RF foil
Update on HL-LHC triplet fingers
Benoit Salvant, Kyrre Sjobak, Christine Vollinger, Na Wang
Follow up on SPS transverse impedance
Update on the impedance studies of the SPS wirescanners
Update on PS Longitudinal Impedance Model
Dummy septum impedance measurements
E. Métral, N. Mounet and B. Salvant
TCTP the CST side F. Caspers, H. Day, A. Grudiev, E. Metral, B. Salvant Acknowledgments: R. Assmann, A. Dallocchio, L. Gentini, C. Zannini Impedance Meeting.
News Request to install SLAC collimator in SPS
TCLIA/TCTV transverse impedance simulation
Discussion on the TDI impedance specifications
Simulation of Monopole modes trapped in LHC collimator
Simulation of trapped modes in LHC collimator
Beam impedance of 63mm VM with unshielded Bellows
Numerical Calculations of Field Enhancements due to Small Grooves
Impedance working group update 21st August 2013
TCLIA/TCTV broad band transverse impedance
Simulation of Longitudinal and Transverse Impedance of TCDD (original geometry) Grudiev
Longitudinal Impedance Studies of VMTSA
Simulations and RF Measurements of SPS Beam Position Monitors (BPV and BPH) G. Arduini, C. Boccard, R. Calaga, F. Caspers, A. Grudiev, E. Metral, F. Roncarolo,
Origin of TCLIA/TCTV transverse BB impedance
Simulation of Monopole modes trapped in LHC collimator
HBP impedance calculations
Collimator design with BPMs (TCTP)
Multiphysics simulations of impedance effects in accelerators
TCLIA/TCTV transverse BB impedance versus gap size
EM Simulation of wakes in BSRT beampipe with extraction mirror
Update of the heating of ALFA detector in 2011
Origin of TCLIA/TCTV transverse BB impedance
Two beam coupling impedance simulations
PS KFA45_17 Wire Measurements and Simulation
TCLIA/TCTV transverse BB impedance versus gap size
Presentation transcript:

CST simulations of VMTSA B. Salvant, H. Day, A. Grudiev, O. Kononenko, E. Métral, April 3rd 2012

Agenda Short reminder of RF measurements Conforming RF fingers with perfect contact Simulating loss of contact

Notes Model was not imported from CATIA Thin RF fingers cause mesh issues Simulating the loss of contact create small air gaps which are also causing mesh issues New PC helps a lot Many possible ways to degrade the contact. Spring not taken into account Considers here only the new (short) RF fingers Loss calculation assume surrounding in Copper for now

Conforming RF fingers with perfect contact (new fingers) Mode Freq (MHz) Q Rs (Ohm) Ploss (W) 1 550.3 6770 0.03 0.001 2 550.4 6790 3 829 5930 ~0 4 1085 10310 0.15 0.0003 Very small power loss

Conforming RF fingers with perfect contact (old fingers) Mode Freq (MHz) Q Rs (Ohm) Ploss (W) 1 550 7640 0.24 0.01 2 7660 0.003 ~0 3 753 5290 6.2 0.08 4 5280 7 0.1 Larger than the new fingers, But still small values

Simulating bad contacts

Simulating bad contacts (1st type) gap

Simulating bad contacts (1st type)  very large losses Mode 1 Mode 2 Gap (mm) Freq (MHz) Q Rs (Ohm) Ploss (W) 0.5 85 900 12400 1600 1 129 1700 43600 5600 1.5 155 56000 7300 2 168 1900 68000 8800 2.5 187 2100 86000 11100 Gap (mm) Freq (MHz) Q Rs (Ohm) Ploss (W) 0.5 85 1000 13780 1800 1 129 500 14000 1.5 155 1700 56000 7300 2 168 63000 8200 2.5 187 2000 88000 11400 Mode 3 Mode 4 Gap (mm) Freq (MHz) Q Rs (Ohm) Ploss (W) 0.5 147 600 1015 130 1 255 900 2840 370 1.5 300 1400 6300 820 2 310 1500 8000 1040 2.5 357 1950 12000 1560 Gap (mm) Freq (MHz) Q Rs (Ohm) Ploss (W) 0.5 166 800 1260 160 1 256 1500 4800 620 1.5 300 6300 820 2 310 1600 9000 1160 2.5 357 1931 12000 1560

Simulating bad contacts (2nd type)

Simulating bad contacts (2nd type) Mode Gap (mm) Freq (MHz) Q Rs (Ohm) 1 550 6770 0.03 6 292 15 312 10 339 32 676 Mode Gap (mm) Freq (MHz) Q Rs (Ohm) 2 550 6790 0.03 6 448 50 168 10 531 322 1438 Mode Gap (mm) Freq (MHz) Q Rs (Ohm) 3 829 5930 ~0 6 550 6800 0.7 10 6837 0.03 Mode Gap (mm) Freq (MHz) Q Rs (Ohm) 4 1085 10310 0.15 6 557 735 600 10 583 155 7

conclusions Difficulties with both tetrahedral and hexahedral mesh However, new modes with large shunt impedance appear between 100 MHz and 400 MHz when degrading the contact The worse the contact, the larger the gap, the worse the power loss, the higher the temperature, the worse the stiffness of the spring and finger, the worse the contact.

Still to be done Are these modes with very low Q real? Understand problems with time domain solver Quantify power loss (with and without ferrite) Perform HFSS simulations to include ferrite in frequency domain Check when only a few fingers have contact Check if the geometry outside affects results Reproduce the RF measurements (S21 with wire, ferrite)