Figure 1 Perivenous distribution of multiple sclerosis lesions

Slides:



Advertisements
Similar presentations
Neurology Resident and Fellow Section
Advertisements

Nat. Rev. Neurol. doi:10/1038/nrneurol
Nat. Rev. Neurol. doi: /nrneurol
MRI and possible differentiating features with nonconventional MRI
Figure 2. MRI features of patients with MS who had antibodies to myelin oligodendrocyte glycoprotein MRI features of patients with MS who had antibodies.
Figure 4 Paradoxical immune reconstitution inflammatory syndrome
Figure 2 The US Centers for Disease Control and
Nat. Rev. Neurol. doi: /nrneurol
A 54-year old woman with subacute encephalopathy
Figure 1 Initial brain imaging (A–C) patient 1; (D–F) patient 2; (G–I) patient 3; (J–L) patient 4; and (M) patient 2. Initial brain imaging (A–C) patient.
Nat. Rev. Neurol. doi: /nrneurol
Nat. Rev. Neurol. doi: /nrneurol
Nat. Rev. Neurol. doi: /nrneurol
Nat. Rev. Neurol. doi: /nrneurol
Figure 3 Brain MRI findings in patients with MOG-Ab Extensive brain lesions with large diameter (A and B), posterior reversible encephalopathy–like lesions.
Figure 4 Neuromyelitis optica spectrum disorder brain lesions
Figure 1 Brain MRI findings in the present case
Figure 4. Brain imaging and neuropathologic demonstration of Epstein-Barr virus (EBV) encephalitis in patient PT-10 Brain imaging and neuropathologic demonstration.
Figure 2 Evolution of MRI abnormalities in faciobrachial dystonic seizures Axial fluid- attenuated inversion recovery (FLAIR)-weighted images from patient.
Figure 1 Coronal MRI images showing the evolution of white matter abnormality and atrophy of patient 1 Coronal MRI images showing the evolution of white.
Figure Facial photograph during headache attack and brain and upper cervical cord MRI Facial photograph during headache attack and brain and upper cervical.
Nat. Rev. Urol. doi: /nrurol
Figure Brain MRI of the patient throughout the disease course(A) Brain MRI at the time of cerebral toxoplasmosis diagnosis (a) and after 1 month of toxoplasmosis.
Figure 3 Example of venous narrowing
Figure 1. MRI features of AP5Z1-associated complicated spastic paraplegia MRI features of AP5Z1-associated complicated spastic paraplegia (A) Periventricular.
Typical manifestation of white matter change on MRI fluid-attenuated inversion recovery imaging in a 37-year-old female patient with chronic migraine.
Figure 1 Clinical correlates of neurodegeneration in MS
Figure 2 Examples of lesions with and without central veins
Figure 1 Evolution of multiple sclerosis
Nat. Rev. Neurol. doi: /nrneurol
Figure 1 MRI head in faciobrachial dystonic seizures (A) Axial fluid-attenuated inversion recovery image from patient 3 in table 2 shows T2-weighted hyperintensity.
Nat. Rev. Neurol. doi: /nrneurol
Figure Radiographic and histopathologic findings (A) Brain MRI at presentation shows multiple areas of T2 hyperintensity in the mesial temporal lobes,
Figure 1. Prebiopsy and postbiopsy MRI
Figure 2 Age-specific prevalence of common comorbidities
Figure 3 MRI findings in opportunistic infections of the CNS
Figure Nuclear Nrf2 expression after fumarate therapy A new left occipital fluid-attenuated inversion recovery hyperintense (A), T1 hypointense (B), and.
Nat. Rev. Neurol. doi: /nrneurol
Figure 1 MRI, pathology, and EEG findings(A) Axial fluid-attenuated inversion recovery (FLAIR) MRI sequences of the brain showing right frontal and parietal.
Long-term appearances of lacunar infarcts (arrows: old stroke lesion on the follow-up scans). Long-term appearances of lacunar infarcts (arrows: old stroke.
Figure 1 Cerebral MRI during the disease course Cerebral MRI with multiple cerebral supratentorial lesions during the disease course: periventricular lesions.
Figure 2 T2-weighted and subtraction images
Figure 2 Exemplary MRI of a patient with contrast enhancement on postcontrast FLAIR MRI of a 54-year-old patient with viral meningitis caused by varicella-zoster.
Figure 2 7T MRI can differentiate between early PML and MS lesions Two different patterns of brain lesions were observed using 7T MRI: ring-enhancing lesions.
Figure 3 Punctate PML lesions visualized by highly resolving T2
Nat. Rev. Neurol. doi: /nrneurol
In 507 follow-up images, only 1
Figure 1 White matter lesion central vein visibility in MS and absence in small vessel disease (SVD)‏ White matter lesion central vein visibility in MS.
Figure 2 Example of venous narrowing
Nat. Rev. Neurol. doi: /nrneurol
Figure 2 Cerebral and spinal MRI (A) Restricted diffusion of both optic nerves (arrows) on diffusion-weighted and apparent diffusion coefficient imaging.
Figure Genetic deletion and MRI changes with EHMT1 deletion
Nat. Rev. Neurol. doi: /nrneurol
Figure 1 Evolution of MRI findings during interleukin (IL)–7 therapy
Figure 1 Imaging of disease onset and treatment response Repeat MRI scans including fluid-attenuated inversion recovery (FLAIR) (A) and T2 fast field echo.
Figure 1 MRI findings over time
Figure 2 Brain MRI at 1 year of age
Figure 1 Brain MRI Brain MRI (A) Axial fluid-attenuated inversion-recovery images show perilesional edema in both cerebellar hemisphere and hypointense.
Figure 2 Frequency of the proportion of total WMLs with central veins in PPMS, RRMS, and SVD Frequency of the proportion of total WMLs with central veins.
Figure Spinal cord imaging (A, B) Sagittal and axial T2-weighted cervical spine MRI demonstrating hyperintensities in the central gray matter of patient.
Figure 1 Detailed overview of treatment course and paraclinical findings Maximum intensity projection maps of supratentorial inversion recovery images.
Figure Serial brain MRI of the patient with encephalitis and spontaneous recovery accompanying IgLON5 autoimmunity Serial brain MRI of the patient with.
Figure 1 Imaging and histopathologic characteristics of patients with CNS-FHL Imaging and histopathologic characteristics of patients with CNS-FHL FLAIR.
Figure Rapid progression of lesions after natalizumab treatment(A) MRI from February Rapid progression of lesions after natalizumab treatment(A)
Long-term appearances of lacunar infarcts (arrows: old stroke lesion on the follow-up scans). Long-term appearances of lacunar infarcts (arrows: old stroke.
Figure 4 Patient 3 MRI evolution over time
Figure 2 Patient 1 MRI evolution over time
Figure 1 Axial FLAIR brain MRI obtained on admission to the ICU demonstrated (A1) old hyperintense subcortical lesions (arrowhead), new superimposed on.
 Axial magnetic resonance imaging (MRI) of a 30 year old man with relapsing remitting multiple sclerosis (MS) showing multiple periventricular lesions:
Figure 1 MRIs MRIs (A and B) Axial FLAIR images of the brain demonstrate multifocal parenchymal lesions including the right hippocampus, right midbrain,
Presentation transcript:

Figure 1 Perivenous distribution of multiple sclerosis lesions Figure 1 | Perivenous distribution of multiple sclerosis lesions. 3 T FLAIR* (combined T2*-weighted MRI and fluid-attenuated inversion recovery) images from four individuals with a variety of neurological conditions, who were scanned at different sites. In the patients with relapsing–remitting or primary progressive multiple sclerosis (MS), a central vessel is visible in most hyperintense lesions (data from the NIH cohort). The dark veins are located centrally in the lesion and can be visualized in at least two perpendicular planes (arrows in magnified boxes). On the other hand, a central vein is absent from most of the lesions (arrowheads in magnified boxes) in the patient with migraine (University of Vermont cohort) and the patient with ischaemic small vessel disease (University of Nottingham cohort). Sati, P. et al. (2016) The central vein sign and its clinical evaluation for the diagnosis of multiple sclerosis: a consensus statement from the North American Imaging in Multiple Sclerosis Cooperative Nat. Rev. Neurol. doi:10.1038/nrneurol.2016.166