A Status Review on Symmetry Energy around Saturation Density: Theory

Slides:



Advertisements
Similar presentations
Department of Physics, South China Univ. of Tech. collaborators Bao-An Li 1, Lie-Wen Chen 2 1 Department of Physics and astronomy, Texas A&M University-Commerce.
Advertisements

Nuclear Symmetry energy and Intermediate heavy ion reactions R. Wada, M. Huang, W. Lin, X. Liu IMP, CAS.
Ilona Bednarek Ustroń, 2009 Hyperon Star Model.
Upper limits on the effect of pasta on potential neutron star observables William Newton Michael Gearheart, Josh Hooker, Bao-An Li.
Nucleon Effective Mass in the DBHF 同位旋物理与原子核的相变 CCAST Workshop 2005 年 8 月 19 日- 8 月 21 日 马中玉 中国原子能科学研究院.
Neutron Number N Proton Number Z a sym =30-42 MeV for infinite NM Inclusion of surface terms in symmetry.
The National Superconducting Cyclotron State University Betty Tsang Constraining neutron star matter with laboratory experiments 2005.
Determination of Density Dependence of Nuclear Matter Symmetry Energy in HIC’s ISOSPIN PHYSICS AND LIQUID GAS PHASE TRANSITION, CCAST, Beijing, Aug ,
The Nuclear Symmetry Energy and Properties of Neutron Stars Lie-Wen Chen ( 陈列文 ) (Department of Physicsa and INPAC, Shanghai Jiao Tong University.
P. Arumugam Centro de Física das Interacções Fundamentais and Departamento de Física, Instituto Superior Técnico, Lisbon, Portugal S.K. Patra, P.K. Sahu,
Equation of State of Neutron-Rich Matter in the Relativistic Mean-Field Approach Farrukh J. Fattoyev My TAMUC collaborators: B.-A. Li, W. G. Newton My.
Constraining the EoS and Symmetry Energy from HI collisions Statement of the problem Demonstration: symmetric matter EOS Laboratory constraints on the.
Isospin effect in asymmetric nuclear matter (with QHD II model) Kie sang JEONG.
Higher-Order Effects on the Incompressibility of Isospin Asymmetric Nuclear Matter Lie-Wen Chen ( 陈列文 ) (Institute of Nuclear, Particle, Astronomy, and.
Tensor force induced short-range correlation and high density behavior of nuclear symmetry energy Chang Xu ( 许 昌 ) Department of Physics, Nanjing Univerisity.
Effects of self-consistence violations in HF based RPA calculations for giant resonances Shalom Shlomo Texas A&M University.
LBL 5/21/2007J.W. Holt1 Medium-modified NN interactions Jeremy W. Holt* Nuclear Theory Group State University of New York * with G.E. Brown, J.D. Holt,
An incomple and possibly biased overview: theoretical studies on symmetry energy Bao-An Li Why is the density-dependence of nuclear symmetry energy still.
Probing the density dependence of symmetry energy at subsaturation density with HICs Yingxun Zhang ( 张英逊 ) China Institute of Atomic Energy JINA/NSCL,
Probing the isospin dependence of nucleon effective mass with heavy-ion reactions Momentum dependence of mean field/ –Origins and expectations for the.
F. Sammarruca, University of Idaho Supported in part by the US Department of Energy. From Neutron Skins to Neutron Stars to Nuclear.
Neutral pion photoproduction and neutron radii Dan Watts, Claire Tarbert University of Edinburgh Crystal Ball and A2 collaboration at MAMI Eurotag Meeting.
BNU The study of dynamical effects of isospin on reactions of p Sn Li Ou and Zhuxia Li (China Institute of Atomic Energy, Beijing )
The Nuclear Symmetry Energy and Neutron Skin Thickness of Finite Nuclei Lie-Wen Chen ( 陈列文 ) (INPAC and Department of Physics, Shanghai Jiao Tong University.
The density curvature parameter and high density behavior of the symmetry energy Lie-Wen Chen ( 陈列文 ) Department of Physics and Astronomy, Shanghai Jiao.
Trento, Giessen-BUU: recent progress T. Gaitanos (JLU-Giessen) Model outline Relativistic transport (GiBUU) (briefly) The transport Eq. in relativistic.
Properties of Asymmetric nuclear matter within Extended BHF Approach Wei Zuo Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou Relativistic.
Probing the symmetry energy with isospin ratio from nucleons to fragments Yingxun Zhang( 张英逊 ) China Institute of Atomic Energy The 11 th International.
Many-body theory of Nuclear Matter and the Hyperon matter puzzle M. Baldo, INFN Catania.
F. Sammarruca, University of Idaho Supported in part by the US Department of Energy. From neutron skins to neutron stars with a microscopic.
Three-body force effect on the properties of asymmetric nuclear matter Wei Zuo Institute of Modern Physics, Lanzhou, China.
Nuclear Isovector Equation-of-State (EOS) and Astrophysics Hermann Wolter Dep. f. Physik, LMU Topics: 1.Phase diagram of strongly interacting matter and.
Congratulations and Thanks, Joe!. The density curvature parameter and high density behavior of the symmetry energy Lie-Wen Chen ( 陈列文 ) Department of.
Isovector reorientation of deuteron in the field of heavy target nuclei The 9th Japan-China Joint Nuclear Physics Symposium (JCNP 2015) Osaka, Japan, Nov.
Z.Q. Feng( 冯兆庆 ), W.F. Li( 李文飞 ), Z.Y. Ming( 明照宇 ), L.W. Chen( 陈列文 ), F. S. Zhang ( 张丰收 ) Institute of Low Energy Nuclear Physics Beijing Normal University.
Several clouds when constraining the stiffness of the symmetry energy Qingfeng Li 1.
PKU-CUSTIPEN 2015 Dirac Brueckner Hartree Fock and beyond Herbert Müther Institute of Theoretical Physics.
The Nuclear Symmetry Energy and Neutron Star Crusts Lie-Wen Chen ( 陈列文 ) (Department of Physics, Shanghai Jiao Tong University) Compact stars in the QCD.
Symmetry energy in the neutron star equation of state and astrophysical observations David E. Álvarez C. Sept 2013 S. Kubis, D. Blaschke and T. Klaehn.
Constraints on symmetry energy and n/p effective mass splitting with HICs Yingxun Zhang ( 张英逊 ) 合作者: Zhuxia Li (李祝霞) China Institute of Atomic Energy,
Tetsuya MURAKAMI For SAMURAI-TPC Collaboration Physics Using SAMURAI TPC.
1 Z.Q. Feng( 冯兆庆 ) 1 G.M. Jin( 靳根明 ) 2 F.S. Zhang ( 张丰收 ) 1 Institute of Modern Physics, CAS 2 Institute of Low Energy Nuclear Physics Beijing NormalUniversity.
Current status and future direction on symmetry energy determination using Heavy Ion Collisions How does this subfield intersect with other subfields?
Relativistic EOS for Supernova Simulations
Electric Dipole Response, Neutron Skin, and Symmetry Energy
Density-dependence of nuclear symmetry energy
Bao-An Li1 & Sherry J. Yennello2 1Arkansas State University
Short-Range Correlations in Asymmetric Nuclei
Shalom Shlomo Cyclotron Institute Texas A&M University
Mean free path and transport parameters from Brueckner-Hartree-Fock
University of Liverpool, Liverpool, UK, July 7-9, 2014
Neutron star radii and the EOS of neutron-rich matter
Microscopic Equations of State
A status review on symmetry energy and nuclear structure
Structure and dynamics from the time-dependent Hartree-Fock model
Light cluster coalescence production in heavy ion collisions
Institute of Modern Physics, CAS
Nuclear masses of neutron-rich nuclei and symmetry energy
Workshop on Nuclear Structure and Astrophysical Applications
INFN Sezione di Catania
Medium polarization effects and transfer reactions in halo nuclei
Symmetry energy coefficients and shell gaps from nuclear masses
Symmetry energy with non-nucleonic degrees of freedom
Neutron Optical Model Potential &Symmetry Energy
Time-Dependent Density Functional Theory (TDDFT)
Variational Calculation for the Equation of State
Zhao-Qing Feng (冯兆庆) Institute of Modern Physics (IMP), CAS
Hyun Kyu Lee Hanyang University
Zbigniew Chajęcki Western Michigan University
Constraining the Nuclear Equation of State via Nuclear Structure observables 曹李刚 中科院近物所 第十四届全国核结构大会,湖州,
Presentation transcript:

A Status Review on Symmetry Energy around Saturation Density: Theory Lie-Wen Chen (陈列文) (INPAC/Department of Physics, Shanghai Jiao Tong University. lwchen@sjtu.edu.cn) Collaborators: Wei-Zhou Jiang (SEU) Che Ming Ko and Jun Xu (TAMU) Bao-An Li and Chang Xu (TAMU-Commerce) De-Hua Wen (SCUT) Zhi-Gang Xiao and Ming Zhang (Tsinghua) Gao-Chan Yong (IMP) Xin Wang, Bao-Jun Cai, Rong Chen, Peng-Cheng Chu, Kai-Jia Sun, Zhen Zhang, Hao Zheng (SJTU) “Topical Workshop on Nuclear Symmetry Energy and Astrophysics”, Xi’an, December 17-19, 2010

Outline The nuclear symmetry energy Theoretical tools of determining the symmetry energy around normal density (1) Many-body approaches (2) Transport theory Symmetry energy around normal density from: (1) Heavy ion collisions (2) Nuclear structures (3) Global nucleon optical potential Symmetry energy around normal density and: (1) Nuclear effective interactions (2) Neutron stars Summary and outlook p. 1

The nuclear symmetry energy p. 2

The Nuclear Symmetry Energy Liquid-drop model (Isospin) Symmetry energy term Symmetry energy including surface diffusion effects (ys=Sv/Ss) Sv ~ the nuclear matter symmetry energy at normal density W. D. Myers, W.J. Swiatecki, P. Danielewicz, P. Van Isacker, A. E. L. Dieperink,…… p. 3

The Nuclear Matter Symmetry Energy EOS of Isospin Asymmetric Nuclear Matter (Parabolic law) Symmetric Nuclear Matter (relatively well-determined) Symmetry energy term (poorly known) Isospin asymmetry The Nuclear Symmetry Energy p. 4

Astrophysics and Cosmology The Symmetry Energy The multifaceted influence of the nuclear symmetry energy A.W. Steiner, M. Prakash, J.M. Lattimer and P.J. Ellis, Phys. Rep. 411, 325 (2005). Nuclear Physics on the Earth Symmetry Energy Astrophysics and Cosmology in Heaven The symmetry energy is also related to some issues of fundamental physics: 1. The precision tests of the SM through atomic parity violation observables (Sil et al., PRC05) 2. Possible time variation of the gravitational constant (Jofre et al. PRL06; Krastev/Li, PRC07) 3. Non-Newtonian gravity proposed in grand unification theories (Wen/Li/Chen, PRL09) p. 5

QCD phase diagram in 3D: density ,temperature, and isospin

Theoretical tools of determining the symmetry energy around normal density (1) Many-body approaches (2) Transport theory p. 7

Nuclear Matter EOS: Many-Body Approaches The nuclear EOS cannot be measured experimentally, its determination thus depends on theoretical approaches Microscopic Many-Body Approaches Non-relativistic Brueckner-Bethe-Goldstone (BBG) Theory Relativistic Dirac-Brueckner-Hartree-Fock (DBHF) approach Self-Consistent Green’s Function (SCGF) Theory Variational Many-Body (VMB) approach Green’s Function Monte Carlo Calculation Vlowk + Renormalization Group …… Effective Field Theory Density Functional Theory (DFT) Chiral Perturbation Theory (ChPT) Phenomenological Approaches Relativistic mean-field (RMF) theory Quark Meson Coupling (QMC) Model Relativistic Hartree-Fock (RHF) Non-relativistic Hartree-Fock (Skyrme-Hartree-Fock) Thomas-Fermi (TF) approximations p. 8

Esym: Many-Body Approaches Z.H. Li et al., PRC74, 047304(2006) Dieperink et al., PRC68, 064307(2003) BHF p. 9 10

Esym: Many-Body Approaches Chen/Ko/Li, PRC72, 064309(2005) Chen/Ko/Li, PRC76, 054316(2007) p. 10 11

W.Z. Jiang, B.A. Li, and L.W. Chen, PLB653, 184 (2007) Esym: Many-Body Approaches RMF with chiral limits W.Z. Jiang, B.A. Li, and L.W. Chen, PLB653, 184 (2007) p. 11 12

Resonant Fermi Gases with a Large Effective Range (PRL,2005) Pure Nuetron Matter: Many-Body Approaches Resonant Fermi Gases with a Large Effective Range (PRL,2005) J. Piekarewicz, JPG37, 064038 (2010) Chiral 3NF (PRC,2010) Quantum MC (PRC,2010) Quantum MC (PRL,2008) p. 12 13

Theoretical tools of determining the symmetry energy around normal density (1) Many-body approaches (2) Transport theory p. 13

Transport Theory Central collisions Transport Models Ni + Au, E/A = 45 MeV/A Transport Models for HIC’s at intermediate energies: N-body approaches CMD, QMD,IQMD,IDQMD, ImQMD,ImIQMD,AMD,FMD One-body approaches BUU/VUU, BNV, LV, IBL Relativistic covariant approaches RVUU/RBUU,RQMD… Central collisions Broad applications of transport models in astrophysics, plasma physics, electron transport in semiconductor and nanostructures, particle and nuclear physics, …… p. 14

Transport model for HIC’s Isospin-dependent BUU (IBUU) model Solve the Boltzmann equation using test particle method Isospin-dependent initialization Isospin- (momentum-) dependent mean field potential Isospin-dependent N-N cross sections a. Experimental free space N-N cross section σexp b. In-medium N-N cross section from the Dirac-Brueckner approach based on Bonn A potential σin-medium c. Mean-field consistent cross section due to m* Isospin-dependent Pauli Blocking EOS p. 15

Transport model: IBUU04 Isospin- and momentum-dependent potential (MDI) Das/Das Gupta/Gale/Li, PRC67,034611 (2003) Chen/Ko/Li, PRL94,032701 (2005) Li/Chen, PRC72, 064611 (2005) p. 16

Relativistic VUU/BUU Model Che Ming Ko, Ulrich Mosel, …… Relativistic Vlasov Equation + Collision Term… Wigner transform, Dirac + Fields Equation drift mean field Non-relativistic Boltzmann-Uehling-Uhlenbeck “Lorentz Force”→ Vector Fields pure relativistic term Collision term: p. 17

中能重离子碰撞输运模型 QMD模型 关于QMD的“推导”文献J. Aichelin, Phys. Rep.202, 233 (1991)有详细的讨论,其基本出发点同样是多体薛定谔方程,约化密度矩阵以及对BBGKY系列的截断,但一开始就引入相空间的概念,即对密度矩阵作富里叶变换得到所谓的Wigner密度(或称Wigner表示).从而直接将多体薛定谔方程表示为类似于经典输运方程的形式,这里我们给出有关的主要公式. AMD/FMD考虑了波函数的反对称化 p. 18

中能重离子碰撞输运模型 QMD模型 r p. 19

中能重离子碰撞输运模型 QMD模型 p. 20

中能重离子碰撞输运模型 QMD模型 - p. 21

Symmetry energy around normal density from: (1) Heavy ion collisions (2) Nuclear structures (3) Global nucleon optical potential p. 22

Symmetry energy probes Promising Probes of the Esym(ρ) (an incomplete list !) Pigmy/Giant resonances Nucleon optical potential B.A. Li/L.W. Chen/C.M. Ko Phys. Rep. 464, 113(2008) p. 23

Esym: Isospin Diffusion in HIC’s Isospin Diffusion/Transport ______________________________________ How to measure Isospin Diffusion? PRL84, 1120 (2000) A+A,B+B,A+B X: isospin tracer p. 24

(1) Esym: Isospin Diffusion in HIC’s Symmetry energy, isospin diffusion, in-medium cross section Chen/Ko/Li, PRL94,032701 (2005) Chen/Ko/Li, PRC72,064309 (2005) Li/ Chen, PRC72, 064611(2005) Isospin Diffusion Data  Esym(ρ0)=31.6 MeV L=88±25 MeV p. 25

Esym: Isoscaling in HIC’s Isoscaling observed in many reactions M.B. Tsang et al. PRL86, 5023 (2001) p. 26

(2) Esym: Isoscaling in HIC’s Consistent with isospin diffusion data! Constraining Symmetry Energy by Isocaling: TAMU Data Shetty/Yennello/Souliotis, PRC75,034602(2007); PRC76, 024606 (2007) Isoscaling Data  Esym(ρ0)=31.6 MeV L=65 MeV Consistent with isospin diffusion data! p. 27

(3) Esym: Isospin diffusion and double n/p ratio in HIC’s ImQMD: n/p ratios and two isospin diffusion measurements Tsang/Zhang/Danielewicz/Famiano/Li/Lynch/Steiner, PRL 102, 122701 (2009) ImQMD: Isospin Diffusion and double n/p ratio  Esym(ρ0)~28 - 34 MeV? L=38 - 103 MeV p. 28

Symmetry energy around normal density from: (1) Heavy ion collisions (2) Nuclear structures (3) Global nucleon optical potential p. 29

(4) Esym: Nuclear Mass in Thomas-Fermi Model Myers/Swiatecki, NPA 601, 141 (1996) Thomas-Fermi Model analysis of 1654 ground state mass of nuclei with N,Z≥8 Thomas-Fermi Model + Nuclear Mass  Esym(ρ0)=32 .65 MeV L=49.9 MeV p. 30

Esym: Neutron Skin of Heavy Nuclei Chen/Ko/Li, PRC72,064309 (2005) Good linear Correlation: S-L Oyamatsu et al., NPA634, 3 (1998); Brown, PRL85,5296 (2000); Horowitz/Piekarewicz, PRL86, 5647 (2001); Furnstahl, NPA706, 85 (2002); Yoshida/Sagawa, PRC73, 044320 (2006) p. 31 32

(5) Esym: Droplet Model Analysis on Neutron Skin N-Skin data measured in antiprotonic atoms Droplet Model + N-skin  Esym(ρ0)=28 - 35 MeV, L=55 ± 25 MeV p. 32

(6) Esym: Skyrme-HF Analysis on Neutron Skin Chen/Ko/Li/Xu PRC82, 024321(2010) N-Skin data of Sn isotopes Esym(ρ0)=30 MeV Neutron skin constraints on L and Esym(ρ0) are insensitive to the variations of other macroscopic quantities. p. 31

Esym: Pygmy Dipole Resonances Electric dipole strength in atomic nuclei By Deniz Savran p. 34

(7)、(8) Esym: Pygmy Dipole Resonances Pygmy Dipole Resonances of 130,132Sn  Esym(ρ0)=32 ± 1.8 MeV L=43.125 ± 15 MeV Pygmy Dipole Resonances of 68Ni and 132Sn  Esym(ρ0)=32.3 ± 1.3 MeV, L=64.8 ± 15.7 MeV p. 35

(9) Esym: IAS+LDM Danielewicz/Lee, NPA 818, 36 (2009) Esym from Isobaric Analog States + Liquid Drop model with surface symmetry energy IAS+Liquid Drop Model with Surface Esym  Esym(ρ0)=32.5 ± 1 MeV L=94.5 ± 16.5 MeV p. 36

Esym from Liquid Drop model with surface symmetry energy (10) Esym: LDM Liu/Wang/Li/Zhang, PRC (2010), in press [arXiv:1011.3865] Esym from Liquid Drop model with surface symmetry energy Liquid Drop Model with Surface Esym  Esym(ρ0)=31.1 ± 1.7 MeV L=66.0 ± 13 MeV p. 37

Symmetry energy around normal density from: (1) Heavy ion collisions (2) Nuclear structures (3) Global nucleon optical potential p. 38

Esym: Global nucleon optical potential Xu/Li/Chen, PRC82, 054607 (2010) Single particle energy at Fermi surface = particle chemical potential Energy density Hugenholtz-Von Hove (HVH) Theorem Symmetry potential (Lane potential) p. 39

Esym: Global nucleon optical potential Xu/Li/Chen, PRC82, 054607 (2010) =26.11 MeV p. 40

(11) Esym: Global nucleon optical potential Xu/Li/Chen, PRC82, 054607 (2010) p. 41

Esym around normal density 11 constraints on Esym (ρ0) and L from nuclear reactions and structures Esym(ρ0)=27 - 36 MeV L=30 - 90 MeV More accurate data are needed to obtain more stringent constraints! p. 42

Symmetry energy around normal density and: (1) Nuclear effective interactions (2) Neutron stars p. 43

Symmetry energy and Nuclear Effective Interaction Chen/Ko/Li, PRC76, 054316(2007) Chen/Ko/Li, PRC72,064309 (2005) Esym(ρ0)= 31.5 ±4.5 MeV and L=55 ± 25 MeV: only 55/118 Esym(ρ0)= 31.5 ±4.5 MeV and L=55 ± 25 MeV: only 8/23 p. 44

Symmetry energy around normal density and: (1) Nuclear effective interactions (2) Neutron stars p. 45

The Nuclear Symmetry Energy and Neutron Stars Lattimer/Prakash, Science 304, 536 (2004) core-crust transition Neutron star has solid crust over liquid core. Rotational glitches: small changes in period from sudden unpinning of superfluid vortices. Evidence for solid crust. 1.4% of Vela moment of inertia glitches. Needs to know the transition density to calculate the fractional moment of inertia of the crust Link et al., PRL83,3362 (99) p. 46

Locating the inner edge of neutron star crust Parabolic Law fails! Xu/Chen/Li/Ma, PRC79, 035802 (2009) Kazuhiro Oyamatsu, Kei Iida Phys. Rev. C75 (2007) 015801 Parabolic Approximation has been assumed !!! pasta Significantly less than their fiducial values: ρt=0.07-0.08 fm-3 and Pt=0.65 MeV/fm3 Xu/Chen/Li/Ma, ApJ 697, 1547 (2009) p. 47

Constraints on M-R relation of NS Xu/Chen/Li/Ma, ApJ 697, 1547 (2009) Lattimer Prakash (Empirical estimate Link et al., PRL83,3362(99)) (Isospin Diff) p. 48

Summary and outlook p. 49

Summary and Outlook Analyzing the data from heavy ion collisions, nuclear structures (mass,neutron skin, PDR…), and nucleon global optical potential already put important constraints on the symmetry energy around the saturation density: Esym(ρ0) =31.5±4.5 MeV and L=60±30 MeV More accurate data are needed to obtain more stringent constraints! Symmetry energy is important for understanding the effective nuclear interactions and many properties of neutron stars. p. 50

谢 谢! Thanks!

Discussions: Esym around normal density Are important the higher-order characteristic parameters of the symmetry energy defined at normal density? What’s the values of these parameters? How can we determine the Esym(ρ0) more accurately? Any more novel observables/approaches to extract the symmetry energy? Model independent detrmination? p. 33

Discussions: Esym around normal density p. 33

Discussions: Esym around normal density p. 33

Discussions: Esym around normal density p. 33

Discussions: Esym around normal density p. 33

Discussions: Esym around normal density L.G. Cao, Z.Y. Ma, CPL, 2008 HIC+N-Skin Trippa, PRC, 2008 M. Liu et al., PRC, 2010 Esym(ρ0)=30±5 MeV L=58±18 MeV p. 33

Radioactive Ion Beam Facilities Cooling Storage Ring (CSR) Facility at HIRFL in China up to 500 MeV/A for 238U http://www.impcas.ac.cn/zhuye/en/htm/247.htm. Radioactive Ion Beam Factory (RIBF) at RIKEN in Japan http://www.riken.jp/engn/index.html FAIR-NUSTAR/GSI in Germany up to 2 GeV/A for 132Sn http://www.gsi.de/fair/index_e.html. SPIRAL2/GANIL in France http://ganinfo.in2p3.fr/research/developments /spiral2 Facility of Rare Isotope Beams (FRIB) in the USA up to 200(400) MeV/A for 132Sn http://www.nscl.msu.edu/ria/index.php The Korean Rare Isotope Accelerator (KoRIA) up to 250 MeV/A for 132Sn, up to 109 pps …… p. 13

The Skyrme HF Energy Density Functional Standard Skyrme Interaction: There are more than 120 sets of Skyrme- like Interactions in the literature _________ Agrawal/Shlomo/Kim Au PRC72, 014310 (2005) Yoshida/Sagawa PRC73, 044320 (2006) Chen/Ko/Li/Xu PRC82, 024321(2010) 9 Skyrme parameters: 9 macroscopic nuclear properties: p. 29

The Skyrme HF Energy Density Functional Chen/Cai/Ko/Li/Shen/Xu, PRC80, 014322 (2009): Modified Skyrme-Like (MSL) Model Chen/Ko/Li/Xu, arXiv:1004.4672

The Skyrme HF with MSL0 Chen/Ko/Li/Xu, arXiv:1004.4672

Correlations between Nuetron-Skin thickness and macroscopic Nuclear Properties For heavy nuclei 208Pb and 120Sn: Δrnp is strongly correlated with L, moderately with Esym(ρ0), a little bit with m*s,0 For medium-heavy nucleus 48Ca: Δrnp correlation with Esym is much weaker; It further depends on GV and W0 Chen/Ko/Li/Xu PRC82, 024321(2010) Important Terms p. 30

Esym at very low densities: Clustering effects Horowitz and Schwenk, Nucl. Phys. A 776 (2006) 55 S. Kowalski, et al., PRC 75 (2007) 014601. 64

Esym at very low densities: Clustering effects J. B. Natowitz et al., PRL104,202501 (2010) 65