Theoretical Interpretation of Power Spectra of Stellar Oscillations

Slides:



Advertisements
Similar presentations
Color-magnitude relations of disk galaxies: observations vs. model predictions Ruixiang Chang ( Shanghai Astronomical Observatory ) Collaborators: Jinliang.
Advertisements

Properties of the Structures formed by Parker-Jeans Instability Y.M. Seo 1, S.S. Hong 1, S.M. Lee 2 and J. Kim 3 1 ASTRONOMY, SEOUL NATIONAL UNIVERSITY.
Asymptotic Giant Branch. Learning outcomes Evolution and internal structure of low mass stars from the core He burning phase to the tip of the AGB Nucleosynthesis.
August 22, 2006IAU Symposium 239 Observing Convection in Stellar Atmospheres John Landstreet London, Canada.
Lars Bildsten Kavli Institute for Theoretical Physics University of California Santa Barbara Insights and Challenges in Stellar Evolution.
Solar-like Oscillations in Red Giant Stars Olga Moreira BAG.
Asteroseismology of solar-type stars Revolutionizing the study of solar-type stars Hans Kjeldsen, Aarhus University.
A ground-based velocity campaign on Procyon Tim Bedding (Univ. Sydney) and about 50 others.
Exoplanet- Asteroseismology Synergies Bill Chaplin, School of Physics & Astronomy University of Birmingham, UK EAHS2012, Oxford, 2012 March 15.
Lecture 2: Observational constraints on dark energy Shinji Tsujikawa (Tokyo University of Science)
Properties of stars during hydrogen burning Hydrogen burning is first major hydrostatic burning phase of a star: Hydrostatic equilibrium: a fluid element.
1 Influence of the Convective Flux Perturbation on the Stellar Oscillations: δ Scuti and γ Doradus cases A. Grigahcène, M-A. Dupret, R. Garrido, M. Gabriel.
Stellar Structure Section 6: Introduction to Stellar Evolution Lecture 14 – Main-sequence stellar structure: … mass dependence of energy generation, opacity,
Wavelength flux Spectral energy distributions of bright stars can be used to derive effective temperatures Ay 123 Lecture I - Physical Properties.
ASTEROSEISMOLOGY CoRoT session, January 13, 2007 Jadwiga Daszyńska-Daszkiewicz Instytut Astronomiczny, Uniwersytet Wrocławski.
22 March 2005AST 2010: Chapter 18 1 Celestial Distances.
Nonradial Oscillations. The Science Case:  Stellar Ages - directly for individual stars  Age determination is direct and reliable  Ages to stars which.
Spring School of Spectroscopic Data Analyses 8-12 April 2013 Astronomical Institute of the University of Wroclaw Wroclaw, Poland.
1 Least squares procedure Inference for least squares lines Simple Linear Regression.
Black hole production in preheating Teruaki Suyama (Kyoto University) Takahiro Tanaka (Kyoto University) Bruce Bassett (ICG, University of Portsmouth)
On the excitation mechanism of Solar 5-min & solar-like oscillations of stars Licai Deng (NAOC) Darun Xiong (PMO)
THE LARGE SCALE CMB CUT-OFF AND THE TENSOR-TO-SCALAR RATIO Gavin Nicholson Imperial College London with Carlo Contaldi Imperial College London (astro-ph/ )
Edge Localized Modes propagation and fluctuations in the JET SOL region presented by Bruno Gonçalves EURATOM/IST, Portugal.
Scientific aspects of SONG Jørgen Christensen-Dalsgaard Department of Physics and Astronomy Aarhus University.
Summary of Experiences from Observations of the Be  binary  Sco Anatoly Miroshnichenko University of North Carolina at Greensboro USA Properties of Be.
Young active star research with SONG and mini-SONG Huijuan Wang National Astronomical Observatories Chinese Academy of Charleston.
Stellar Parameters through Analysis of the Kepler Oscillation Data Chen Jiang & Biwei Jiang Department of Astronomy Beijing Normal University 2 April 2010.
Witness Bunch Experimental Studies at CESR-TA Robert Holtzapple Alfred University/Cal Poly San Luis Obispo.
Excitation and damping of oscillation modes in red-giant stars Marc-Antoine Dupret, Université de Liège, Belgium Workshop Red giants as probes of the structure.
SEISMOLOGY OF STELLAR ATMOSPHERES
Apparent Magnitude (useful for describing how bright objects appear from the Earth) The original magnitude system of Hipparchus had: magnitude 1 – the.
Internal rotation: tools of seismological analysis and prospects for asteroseismology Michael Thompson University of Sheffield
Wave Generation and Propagation in the Solar Atmosphere Zdzislaw Musielak Zdzislaw Musielak Physics Department Physics Department University of Texas at.
Wave chaos and regular frequency patterns in rapidly rotating stars F. Lignières Laboratoire d’Astrophysique de Toulouse et Tarbes - France in collaboration.
N* Production in α-p and p-p Scattering (Study of the Breathing Mode of the Nucleon) Investigation of the Scalar Structure of baryons (related to strong.
A tool to simulate COROT light-curves R. Samadi 1 & F. Baudin 2 1 : LESIA, Observatory of Paris/Meudon 2 : IAS, Orsay.
Curvelet analysis of asteroseismic data: The Procyon noise-reduced MOST power spectrum R. A. García (1,2), P. Lambert (1,2), J. Ballot (2,3), S. Pires.
Modelling high-order g-mode pulsators Nice 27/05/2008 A method for modelling high-order, g-mode pulsators: The case of γ Doradus stars. A. Moya Instituto.
Asteroseismology A brief Introduction
Jim Fuller Caltech/KITP ACOUSTIC OSCILLATIONS IN RED GIANTS.
Precision stellar physics from the ground Andrzej Pigulski University of Wrocław, Poland Special Session #13: High-precision tests of stellar physics from.
Infrasounds and Background Free Oscillations Naoki Kobayashi [1] T. Kusumi and N. Suda [2] [1] Tokyo Tech [2] Hiroshima Univ.
Simple Nonlinear Models Suggest Variable Star Universality John F. Lindner, Wooster College Presented by John G. Learned University of Hawai’i at Mānoa.
Radiation spectra from relativistic electrons moving in turbulent magnetic fields Yuto Teraki & Fumio Takahara Theoretical Astrophysics Group Osaka Univ.,
Oscillation spectra with regular patterns
 Parallax is the apparent displacement of an object against the background when seen from two different perspectives.
HIGH FREQUENCY GROUND MOTION SCALING IN THE YUNNAN REGION W. Winston Chan, Multimax, Inc., Largo, MD W. Winston Chan, Multimax, Inc., Largo, MD Robert.
Julie Hollek and Chris Lindner.  Background on HK II  Stellar Analysis in Reality  Methodology  Results  Future Work Overview.
Can observations look back to the beginning of inflation ?
-1- Solar wind turbulence from radio occultation data Chashei, I.V. Lebedev Physical Institute, Moscow, Russia Efimov, A.I., Institute of Radio Engineering.
Flows and Cycles Large scale flows and stellar magnetic cycles Markus Roth Wiebke Herzberg René Kiefer Ariane Schad Guy Davis (UoB) Retreat of the Stellar.
Heaviest Stellar Black Hole in Nearby Galaxy CXC release Oct. 17, 2007 A M  in an eclipsing binary in the nearby spiral Galaxy Messier 33 ……Nature.
Asteroseismology of Sun-like Stars
Lars Bildsten Kavli Institute for Theoretical Physics University of California Santa Barbara Hearing the Stars! Happy Birthday David!!
Takashi Sekii Division of Solar and Plasma Astrophysics and Hinode Science Center NAOJ Rotation of KIC
Solar-like Oscillations in other Stars or The only way to test directly stellar structure theory I.Scaling Relations II. Results.
Spectroscopy and the evolution of hot subdwarf stars
Convective Core Overshoot Lars Bildsten (Lecturer) & Jared Brooks (TA) Convective overshoot is a phenomenon of convection carrying material beyond an unstable.
From temporal spectra to stellar interiors (and back)
Asteroseismology of solar-type stars
Electron Observations from ATIC and HESS
Pre-Main-Sequence of A stars
An asteroseismic data-interpretation pipeline for Kepler
CS 188: Artificial Intelligence Fall 2008
Theory of solar and stellar oscillations - I
Section 2: Measuring the Stars
Study of Fast Ions in CESR
Convective Energy Transport Boundary in Field Stars
Althea V. Moorhead, University of Michigan
“B-mode from space” workshop,
Presentation transcript:

Theoretical Interpretation of Power Spectra of Stellar Oscillations H.Ando National Astronomical Observatory of Japan 9th, December, 2004

1. Observed Power Spectra of Stellar Oscillations Procyon(F5 subg) Kambe (2000) Sun, αCen A, βHyi(G2 subg), η Boo(G0 subg), ξ Hya(G7 g) Bedding and Kjeldsen (2003) PASA, 20, 203-212

Spectrum of Procyon on 25,26,27,28, and 29, Dec., 2000

Summed spectrum of Procyon on 25, 28, and 29, Dec., 2000

Power Spectra

Charactristics of Spectra ・shape of envelope (peak freq.) ・Asymptotic Formula Large separation Small Separation

Newly recognized points ・Not a simple distribution of amplitudes ・Deviation from equal spacing pattern

2. Theoretical background of Oscillations ・Radial Pulsation (l=0) acoustic modes(n=0,1,2,....) fn(r) ・non-radial oscillation(l≠0) acoustic modes (p-mode) (n,l,m) gravity modes (g-mode)(n,l,m) fn(r)Ylm(θ,φ)

Propagation diagram in Stars ex. Procyon M=1.42 M⦿ (Prieto et. al 2002) #1(ZAMS) #51 (Procyon; L=7L⦿, Te=6530) #211(giant; L=7.7L⦿, Te=4490) Observed parameters of Procyon L= 7.04L⦿ , Te= 6530

Propagation diagram for #1 36 36 0 2236.61 47.29 5.90E-07 35 35 0 2116.27 46.00 8.05E-07 34 34 0 1999.02 44.71 9.92E-07 33 33 0 1884.98 43.42 1.15E-06 32 32 0 1774.07 42.12 1.29E-06 31 31 0 1666.27 40.82 1.40E-06 30 30 0 1561.78 39.52 1.48E-06 29 29 0 1460.84 38.22 1.53E-06 28 28 0 1363.62 36.93 1.55E-06 27 27 0 1270.12 35.64 1.54E-06 26 26 0 1180.19 34.35 1.52E-06 25 25 0 1093.67 33.07 1.49E-06 24 24 0 1010.51 31.79 1.45E-06 23 23 0 930.78 30.51 1.42E-06 22 22 0 854.58 29.23 1.40E-06 21 21 0 781.89 27.96 1.40E-06 20 20 0 712.57 26.69 1.42E-06 19 19 0 646.44 25.43 1.46E-06 18 18 0 583.36 24.15 1.49E-06 17 17 0 523.35 22.88 1.51E-06 16 16 0 466.58 21.60 1.52E-06 15 15 0 413.22 20.33 1.50E-06 14 14 0 363.33 19.06 1.47E-06 13 13 0 316.95 17.80 1.41E-06 12 12 0 274.08 16.56 1.33E-06 11 11 0 234.74 15.32 1.25E-06 10 10 0 198.94 14.10 1.19E-06 9 9 0 166.66 12.91 1.23E-06 8 8 0 137.71 11.73 1.42E-06 7 7 0 111.79 10.57 1.91E-06 6 6 0 88.70 9.42 2.97E-06 5 5 0 68.21 8.26 5.43E-06 4 4 0 50.49 7.11 1.14E-05 3 3 0 35.37 5.95 2.91E-05 2 2 0 22.92 4.79 1.02E-04 1 1 0 12.80 3.58 7.99E-04 -1 0 1 4.23 2.06 6.11E-01 -2 0 2 1.97 1.41 7.14E-01 P G P G

25 25 0 1224.07 34.99 3.05E-06 24 24 0 1131.91 33.64 3.21E-06 23 23 0 1043.65 32.31 3.38E-06 22 22 0 959.17 30.97 3.48E-06 21 21 0 879.00 29.65 3.59E-06 20 20 0 802.57 28.33 3.83E-06 19 19 0 746.14 27.32 1.42E-04 18 19 1 728.52 26.99 4.35E-06 17 18 1 659.75 25.69 4.33E-06 16 17 1 593.52 24.36 4.72E-06 15 16 1 530.53 23.03 5.13E-06 14 15 1 470.90 21.70 5.54E-06 13 14 1 414.70 20.36 5.86E-06 12 13 1 362.18 19.03 6.03E-06 11 12 1 319.80 17.88 9.31E-04 10 12 2 313.30 17.70 6.11E-06 9 11 2 268.43 16.38 5.81E-06 8 10 2 227.25 15.07 5.51E-06 7 9 2 189.91 13.78 5.02E-06 6 8 2 167.35 12.94 6.05E-03 5 8 3 156.58 12.51 4.58E-06 4 7 3 127.08 11.27 4.37E-06 3 6 3 105.14 10.25 1.12E-03 2 6 4 101.36 10.07 4.58E-06 1 5 4 79.28 8.90 5.75E-06 0 4 4 73.00 8.54 1.80E-03 -1 4 5 60.86 7.80 9.30E-06 -2 3 5 53.57 7.32 5.26E-04 -3 3 6 47.92 6.92 2.70E-05 -4 3 7 41.58 6.45 6.67E-05 -5 2 7 39.04 6.25 8.00E-05 -6 2 8 32.63 5.71 1.70E-04 -7 2 9 30.25 5.50 1.39E-04 -8 2 10 26.37 5.14 2.36E-04 -9 1 10 24.17 4.92 4.53E-04 P G P G

211 1 -23 22 45 1097.25 33.12 2.65E-05 -24 22 46 1060.79 32.57 6.50E-06 -25 21 46 1046.33 32.35 1.15E-05 -26 21 47 1009.25 31.77 1.01E-04 -27 21 48 975.16 31.23 1.78E-05 -28 21 49 962.36 31.02 1.82E-05 -29 20 49 930.81 30.51 2.01E-04 -30 20 50 897.73 29.96 8.23E-05 -31 20 51 882.12 29.70 1.95E-05 -32 19 51 860.46 29.33 2.05E-04 -33 19 52 830.45 28.82 3.23E-04 -34 19 53 806.29 28.40 3.59E-05 -35 19 54 795.75 28.21 6.40E-05 -36 18 54 770.81 27.76 5.44E-04 -37 18 55 745.08 27.30 4.06E-04 -38 18 56 726.23 26.95 4.20E-05 -39 17 56 716.05 26.76 1.23E-04 -40 17 57 694.02 26.34 8.00E-04 -41 17 58 671.87 25.92 6.44E-04 -42 17 59 653.85 25.57 7.07E-05 -43 17 60 645.80 25.41 9.67E-05 -44 16 60 627.81 25.06 8.81E-04 -45 16 61 608.60 24.67 1.22E-03 -46 16 62 590.72 24.30 3.20E-04 -47 16 63 580.86 24.10 6.02E-05 -48 15 63 570.18 23.88 4.37E-04 -49 15 64 553.83 23.53 1.64E-03 -50 15 65 537.77 23.19 1.58E-03 -51 15 66 522.89 22.87 3.66E-04 -52 15 67 514.61 22.68 7.27E-05 -53 14 67 505.59 22.49 4.93E-04 -54 14 68 491.91 22.18 1.96E-03 -55 14 69 478.35 21.87 2.31E-03 -56 14 70 465.50 21.58 9.38E-04 -57 14 71 455.57 21.34 1.08E-04 -58 14 72 450.26 21.22 1.92E-04 -59 13 72 439.52 20.96 1.54E-03 -60 13 73 428.07 20.69 3.16E-03 -61 13 74 417.01 20.42 2.85E-03 -62 13 75 406.54 20.16 1.09E-03 -63 13 76 398.22 19.96 1.27E-04 -64 13 77 393.84 19.85 1.89E-04 G P G P

Interaction bet ween Two potential wells ・ZAMS: Almost independent

・Advanced Evolution stage: Mixed character Avoided Crossing

Mixed Mode

3. Prediction of Power Spectra Basic assumptions ・Power ∝ (Input Energy)/(Kinetic Energy of mode), where KE is estimated with radial displacement, say(δr/r=1.0), at the surface. ・Input Energy Continuous spectrum by turbulent convection (Kolmogorov spectrum) We give Power ∝ f^n/(KE) n=2 : flat input energy (say, 1m/s at the surface) n=-2: Kolmogorov type input energy

Summary ・There are pulsation modes (l=0) beyond Cut-off frequency ・There are practical cut-off in lower end due to existence of g-modes’ territory ・Larger interaction of p-modes and g-modes in l=1 -modes with smaller amplitudes in mixed modes -frequencies of modes(l=1) shifted to modes with l=0 in lower frequency region

A possible suggestion Quantitative analysis of the Oscillation spectrum of ηBoo Guenther AJ, 612, 454-462, 2004