Deutsche Gesellschaft für Informationswissenschaft und Informationspraxis e.V. 1. DGI-Konferenz, 62. DGI Jahrestagung Semantic Web & Linked Data Elemente.

Slides:



Advertisements
Similar presentations
Numbers Treasure Hunt Following each question, click on the answer. If correct, the next page will load with a graphic first – these can be used to check.
Advertisements

Scenario: EOT/EOT-R/COT Resident admitted March 10th Admitted for PT and OT following knee replacement for patient with CHF, COPD, shortness of breath.
Angstrom Care 培苗社 Quadratic Equation II
3rd Annual Plex/2E Worldwide Users Conference 13A Batch Processing in 2E Jeffrey A. Welsh, STAR BASE Consulting, Inc. September 20, 2007.
AP STUDY SESSION 2.
1
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Myra Shields Training Manager Introduction to OvidSP.
David Burdett May 11, 2004 Package Binding for WS CDL.
Microsoft Access 2007 Advanced Level. © Cheltenham Courseware Pty. Ltd. Slide No 2 Forms Customisation.
Local Customization Chapter 2. Local Customization 2-2 Objectives Customization Considerations Types of Data Elements Location for Locally Defined Data.
Process a Customer Chapter 2. Process a Customer 2-2 Objectives Understand what defines a Customer Learn how to check for an existing Customer Learn how.
Custom Statutory Programs Chapter 3. Customary Statutory Programs and Titles 3-2 Objectives Add Local Statutory Programs Create Customer Application For.
Custom Services and Training Provider Details Chapter 4.
CALENDAR.
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt BlendsDigraphsShort.
Dr. Alexandra I. Cristea CS 253: Topics in Database Systems: C3.
Last update: (2) (3) The Dutch airline.
1 Click here to End Presentation Software: Installation and Updates Internet Download CD release NACIS Updates.
Introduction to Semantic Web and RDF RDF, Linked Data workshop at DANS The Hague, 28 th July, 2010, Ivan Herman, W3C.
Knowledge Extraction from Technical Documents Knowledge Extraction from Technical Documents *With first class-support for Feature Modeling Rehan Rauf,
Break Time Remaining 10:00.
Turing Machines.
Anything But Typical Learning to Love JavaScript Prototypes Page 1 © 2010 Razorfish. All rights reserved. Dan Nichols March 14, 2010.
Table 12.1: Cash Flows to a Cash and Carry Trading Strategy.
Red Tag Date 13/12/11 5S.
PP Test Review Sections 6-1 to 6-6
EIS Bridge Tool and Staging Tables September 1, 2009 Instructor: Way Poteat Slide: 1.
Outline Minimum Spanning Tree Maximal Flow Algorithm LP formulation 1.
Bellwork Do the following problem on a ½ sheet of paper and turn in.
Cambridge Semantic Web Gathering , Cambridge, MA, USA Ivan Herman W3C, Semantic Web Activity Lead.
1 The Royal Doulton Company The Royal Doulton Company is an English company producing tableware and collectables, dating to Operating originally.
Operating Systems Operating Systems - Winter 2010 Chapter 3 – Input/Output Vrije Universiteit Amsterdam.
Exarte Bezoek aan de Mediacampus Bachelor in de grafische en digitale media April 2014.
Sample Service Screenshots Enterprise Cloud Service 11.3.
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
GIS Lecture 8 Spatial Data Processing.
1..
Adding Up In Chunks.
1 ARIN – KR Practical 1, Part 2 RDF Some of these slides are based on tutorial by Ivan Herman (W3C) reproduced here with kind permission. All changes and.
SLP – Endless Possibilities What can SLP do for your school? Everything you need to know about SLP – past, present and future.
MaK_Full ahead loaded 1 Alarm Page Directory (F11)
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Synthetic.
2004 EBSCO Publishing Presentation on EBSCOadmin.
: 3 00.
5 minutes.
1 hi at no doifpi me be go we of at be do go hi if me no of pi we Inorder Traversal Inorder traversal. n Visit the left subtree. n Visit the node. n Visit.
Semantic Web Motivating Example. A Motivating example Here’s a motivating example, adapted from a presentation by Ivan Herman It introduces semantic web.
1 Let’s Recapitulate. 2 Regular Languages DFAs NFAs Regular Expressions Regular Grammars.
Speak Up for Safety Dr. Susan Strauss Harassment & Bullying Consultant November 9, 2012.
Essential Cell Biology
Converting a Fraction to %
Clock will move after 1 minute
PSSA Preparation.
Chapter 13 Web Page Design Studio
Physics for Scientists & Engineers, 3rd Edition
Energy Generation in Mitochondria and Chlorplasts
Select a time to count down from the clock above
RefWorks: The Basics October 12, What is RefWorks? A personal bibliographic software manager –Manages citations –Creates bibliogaphies Accessible.
Copyright Tim Morris/St Stephen's School
Introduction Peter Dolog dolog [at] cs [dot] aau [dot] dk Intelligent Web and Information Systems September 9, 2010.
Ivan Herman, W3C, “Semantic Café”, organized by the W3C Brazil Office São Paulo, Brazil,
1 Tutorial on the Semantic Web (Last update: 26 May 2009) adapted from (C) Ivan Herman, W3C Given at WE course by Peter Dolog Adapted: October 2010.
What is the Semantic Web? 17 th XBRL International Conference Eindhoven, the Netherlands 5 st May, 2008 Ivan Herman, W3C.
Overview of the Semantic Web Ralph R. Swick World Wide Web Consortium (W3C) 17 October 2009.
Tutorial on Semantic Web
Materi Minggu ke 11 Introduction to the Semantic Web
How does the Semantic Web Work?
Overview of the Semantic Web Ralph R
Presentation transcript:

Deutsche Gesellschaft für Informationswissenschaft und Informationspraxis e.V. 1. DGI-Konferenz, 62. DGI Jahrestagung Semantic Web & Linked Data Elemente zukünftiger Informationsinfrastrukturen How does the Semantic Web Work? Ivan Herman, W3C

2 The Music site of the BBC

3

4 How to build such a site 1. Site editors roam the Web for new facts may discover further links while roaming They update the site manually And the site gets soon out-of-date

5 How to build such a site 2. Editors roam the Web for new data published on Web sites Scrape the sites with a program to extract the information Ie, write some code to incorporate the new data Easily get out of date again…

6 How to build such a site 3. Editors roam the Web for new data via API-s Understand those… input, output arguments, datatypes used, etc Write some code to incorporate the new data Easily get out of date again…

7 The choice of the BBC Use external, public datasets Wikipedia, MusicBrainz, … They are available as data not API-s or hidden on a Web site data can be extracted using, eg, HTTP requests or standard queries

8 In short… Use the Web of Data as a Content Management System Use the community at large as content editors

9 And this is no secret…

10 Data on the Web There are more an more data on the Web government data, health related data, general knowledge, company information, flight information, restaurants,… More and more applications rely on the availability of that data

11 But… data are often in isolation, silos Photo credinepatterson, Flickr

12 Imagine… A Web where documents are available for download on the Internet but there would be no hyperlinks among them

13 And the problem is real…

14 Data on the Web is not enough… We need a proper infrastructure for a real Web of Data data is available on the Web data are interlinked over the Web (Linked Data) I.e., data can be integrated over the Web

15 In what follows… We will use a simplistic example to introduce the main Semantic Web concepts

16 The rough structure of data integration Map the various data onto an abstract data representation make the data independent of its internal representation… Merge the resulting representations Start making queries on the whole! queries not possible on the individual data sets

17 We start with a book...

18 A simplified bookstore data (dataset A) IDAuthorTitlePublisherYear ISBN Xid_xyzThe Glass Palaceid_qpr2000 IDNameHomepage id_xyzGhosh, Amitavhttp:// IDPublishers nameCity id_qprHarper CollinsLondon

19 1 st : export your data as a set of relations Ghosh, Amitav The Glass Palace 2000 London Harper Collins a:title a:year a:city a:p_name a:name a:homepage a:author a:publisher

20 Some notes on the exporting the data Data export does not necessarily mean physical conversion of the data relations can be generated on-the-fly at query time via SQL bridges scraping HTML pages extracting data from Excel sheets etc. One can export part of the data

21 Same book in French…

22 Another bookstore data (dataset F) ABCD 1 IDTitreTraducteurOriginal 2 ISBN Le Palais des Miroirs$A12$ISBN X IDAuteur 7 ISBN X$A11$ Nom 11 Ghosh, Amitav 12 Besse, Christianne

23 2 nd : export your second set of data Ghosh, Amitav Besse, Christianne Le palais des miroirs f:original f:nom f:traducteur f:auteur f:titre f:nom

24 3 rd : start merging your data Ghosh, Amitav Besse, Christianne Le palais des miroirs f:original f:nom f:traducteu r f:auteur f:titre f:nom Ghosh, Amitav The Glass Palace 2000 London Harper Collins a:title a:year a:city a:p_name a:name a:homepage a:author a:publisher

25 3 rd : start merging your data (cont) Ghosh, Amitav Besse, Christianne Le palais des miroirs f:original f:nom f:traducteu r f:auteur f:titre f:nom Ghosh, Amitav The Glass Palace 2000 London Harper Collins a:title a:year a:city a:p_name a:name a:homepage a:author a:publisher Same URI!

26 3 rd : start merging your data a:title Ghosh, Amitav Besse, Christianne Le palais des miroirs f:original f:nom f:traducteu r f:auteur f:titre f:nom Ghosh, Amitav The Glass Palace 2000 London Harper Collins a:year a:city a:p_name a:name a:homepage a:author a:publisher

27 Start making queries… User of data F can now ask queries like: give me the title of the original well, … « donnes-moi le titre de loriginal » This information is not in the dataset F… …but can be retrieved by merging with dataset A!

28 However, more can be achieved… We feel that a:author and f:auteur should be the same But an automatic merge doest not know that! Let us add some extra information to the merged data: a:author same as f:auteur both identify a Person a term that a community may have already defined: a Person is uniquely identified by his/her name and, say, homepage it can be used as a category for certain type of resources

29 3 rd revisited: use the extra knowledge Besse, Christianne Le palais des miroirs f:original f:nom f:traducteu r f:auteur f:titre f:nom Ghosh, Amitav The Glass Palace 2000 London Harper Collins a:title a:year a:city a:p_name a:name a:homepage a:author a:publisher r:type

30 Start making richer queries! User of dataset F can now query: donnes-moi la page daccueil de lauteur de loriginal well… give me the home page of the originals auteur The information is not in datasets F or A… …but was made available by: merging datasets A and datasets F adding three simple extra statements as an extra glue

31 Combine with different datasets Using, e.g., the Person, the dataset can be combined with other sources For example, data in Wikipedia can be extracted using dedicated tools e.g., the dbpedia project can extract the infobox information from Wikipedia already…dbpedia

32 Merge with Wikipedia data Besse, Christianne Le palais des miroirs f:original f:no m f:traducteu r f:auteur f:titre f:nom Ghosh, Amitav The Glass Palace 2000 London Harper Collins a:title a:year a:city a:p_name a:name a:homepage a:author a:publisher r:type r:type foaf:namew:reference

33 Merge with Wikipedia data Besse, Christianne Le palais des miroirs f:original f:nom f:traducteu r f:auteur f:titre f:nom Ghosh, Amitav The Glass Palace 2000 London Harper Collins a:title a:year a:city a:p_name a:name a:homepage a:author a:publisher r:type r:type foaf:namew:reference w:author_of w:isbn

34 Merge with Wikipedia data Besse, Christianne Le palais des miroirs f:original f:nom f:traducteu r f:auteur f:titre f:no m Ghosh, Amitav The Glass Palace 2000 London Harper Collins a:title a:year a:city a:p_name a:name a:homepage a:author a:publisher r:type r:type foaf:namew:reference w:author_of w:born_in w:isbn w:long w:lat

35 Is that surprising? It may look like it but, in fact, it should not be… What happened via automatic means is done every day by Web users! The difference: a bit of extra rigour so that machines could do this, too

36 What did we do? We combined different datasets that are somewhere on the web are of different formats (mysql, excel sheet, etc) have different names for relations We could combine the data because some URI-s were identical (the ISBN-s in this case)

37 What did we do? We could add some simple additional information (the glue), also using common terminologies that a community has produced As a result, new relations could be found and retrieved

38 It could become even more powerful We could add extra knowledge to the merged datasets e.g., a full classification of various types of library data geographical information etc. This is where ontologies, extra rules, etc, come in ontologies/rule sets can be relatively simple and small, or huge, or anything in between… Even more powerful queries can be asked as a result

39 What did we do? (cont) Data in various formats Data represented in abstract format Applications Map, Expose, … Manipulate Query …

40 So what is the Semantic Web? The Semantic Web is a collection of technologies to make such integration of Linked Data possible!

41 Details: many different technologies an abstract model for the relational graphs: RDF add/extract RDF information to/from XML, (X)HTML: GRDDL, RDFa a query language adapted for graphs: SPARQL characterize the relationships and resources: RDFS, OWL, SKOS, Rules applications may choose among the different technologies reuse of existing ontologies that others have produced (FOAF in our case)

42 Using these technologies… Data in various formats Data represented in RDF with extra knowledge (RDFS, SKOS, RIF, OWL,…) Applications RDB RDF, GRDL, RDFa, … SPARQL, Inferences …

43 Remember the BBC?

44 Remember the BBC?

45 What happens is… Datasets (e.g., MusicBrainz) are published in RDF Some simple vocabularies are involved Those datasets can be queried together via SPARQL The result can be displayed following the BBC style

46 Some examples of datasets available on the Web

47 Why is all this good? A huge amount of data (information) is available on the Web Sites struggle with the dual task of: providing quality data providing usable and attractive interfaces to access that data

48 Why is all this good? Raw Data Now! Tim Berners-Lee, TED Talk, Raw Data Now! Tim Berners-Lee, TED Talk, Semantic Web technologies allow a separation of tasks: 1. publish quality, interlinked datasets 2. mash-up datasets for a better user experience

49 Why is all this good? The network effect is also valid for data There are unexpected usages of data that authors may not even have thought of Curating, using, exploiting the data requires a different expertise

50 An example for unexpected reuse…

51 An example for unexpected reuse…

52 Where are we today (in a nutshell)? The technologies are in place, lots of tools around there is always room for improvement, of course Large datasets are published on the Web, ie, ready for integration with others Large number of vocabularies, ontologies, etc, are available in various areas Many applications are being created

53 Everything is not rosy, of course… Tools have to improve scaling for very large datasets quality check for data etc There is a lack of knowledgeable experts this makes the initial step tedious leads to a lack of understanding of the technology But we are getting there!

Thank you for your attention! These slides are also available on the Web: