Chapter 19 Electrochemistry Semester 1/2009 Ref: 19.2 Galvanic Cells

Slides:



Advertisements
Similar presentations
Electrochemistry Chapter 19
Advertisements

1 Electrochemistry Chapter 18, Electrochemical processes are oxidation-reduction reactions in which: the energy released by a spontaneous reaction.
Electrochemical Cells. Definitions Voltaic cell (battery): An electrochemical cell or group of cells in which a product-favored redox reaction is used.
19.2 Galvanic Cells 19.3 Standard Reduction Potentials 19.4 Spontaneity of Redox Reactions 19.5 The Effect of Concentration on Emf 19.8 Electrolysis Chapter.
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Electrochemistry The study of the interchange of chemical and electrical energy.
Electrochemistry Chapter and 4.8 Chapter and 19.8.
Electrochemistry Part 1 Ch. 20 in Text (Omit Sections 20.7 and 20.8) redoxmusic.com.
Chapter 17 Electrochemistry 1. Voltaic Cells In spontaneous reduction-oxidation reactions, electrons are transferred and energy is released. The energy.
Electrochemical Reactions
Electrochemistry Chapter 4.4 and Chapter 20. Electrochemical Reactions In electrochemical reactions, electrons are transferred from one species to another.
Predicting Spontaneous Reactions
Electrochemistry Chapter 19.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Redox Reactions and Electrochemistry
Electrochemistry Chapter 19 Electron Transfer Reactions Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation.
Redox Reactions and Electrochemistry
Electrochemistry Chapter 17.
Electrochemistry Chapter 19. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 21: Electrochemistry II
Electrochemistry and Redox Reactions. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
Activity Series lithiumpotassiummagnesiumaluminumzincironnickelleadHYDROGENcoppersilverplatinumgold Oxidizes easily Reduces easily Less active More active.
Oxidation-Reduction Reactions Chapter 4 and 18. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- _______ half-reaction (____ e - ) ______________________.
Electrochemistry Chapter 3. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
Electrochemistry Chapter 20 Brown-LeMay. Review of Redox Reactions Oxidation - refers to the loss of electrons by a molecule, atom or ion - LEO goes Reduction.
Redox Reactions & Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Redox Reactions and Electrochemistry Chapter 19. Voltaic Cells In spontaneous oxidation-reduction (redox) reactions, electrons are transferred and energy.
Electrochemistry.
Electrochemistry Mr. Weldon. 1. Definition: Field that deals with chemical changes caused by electric current and the production of electricity by chemical.
Chapter 20 Electrochemistry. © 2009, Prentice-Hall, Inc. Oxidation Numbers In order to keep track of what loses electrons and what gains them, we assign.
Electrochemistry Chapter 5. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
Galvanic Cell: Electrochemical cell in which chemical reactions are used to create spontaneous current (electron) flow.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
 Anything that uses batteries: › Cell phones › Game boys › Flash lights › Cars  Jewelry—electroplating.
Chapter 20 Electrochemistry. Oxidation States electron bookkeeping * NOT really the charge on the species but a way of describing chemical behavior. Oxidation:
Redox Reactions and Electrochemistry Chapter 19. Cell Potentials E cell  = E red  (cathode) − E red  (anode) = V − (−0.76 V) = V.
Electrochemistry Part Four. CHEMICAL CHANGE  ELECTRIC CURRENT To obtain a useful current, we separate the oxidizing and reducing agents so that electron.
1 Electrochemistry Chapter 18 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Electrochemistry. Voltaic Cell (or Galvanic Cell) The energy released in a spontaneous redox reaction can be used to perform electrical work. A voltaic.
Electrochemistry. To obtain a useful current, we separate the oxidation and reduction half-reactions so that electron transfer occurs thru an external.
CHAPTER SIX(19) Electrochemistry. Chapter 6 / Electrochemistry Chapter Six Contains: 6.1 Redox Reactions 6.2 Galvanic Cells 6.3 Standard Reduction Potentials.
Electrochemistry.
Chapter 20 Electrochemistry
Electrochemistry Chapter 18
Electrochemistry Chapter 19.
Electrochemistry Chapter 19
Electrochemistry Ch 13 pg 225 Princeton Review.
Dr. Aisha Moubaraki CHEM 202
Redox Reactions and Electrochemistry
Oxidation-Reduction Reactions
Electrochemical cells
Electrochemistry Chapter 18
Electrochemistry Chapter 19
Electrochemistry.
Electrochemistry Chapter 7.
Chapter 17: Electrochemistry
Harnessing the changes in oxidation and reduction
Chapter 20 Electrochemistry
AP Chemistry Chapter 4.9 and Chapter 17
Electrochemistry Chapter 19
Electrochemistry Chapter 19
Chapter 20 Electrochemistry
Chapter 20: Electrochemistry
From Voltage Cells to Nernst Equation
Electrochemistry.
Electrochemistry Chapter 19
Chapter 21 Thanks to D Scoggin Cabrillo College
Electrochemistry Chapter 19
Presentation transcript:

Chapter 19 Electrochemistry Semester 1/2009 Ref: http://www.mhhe.com/chemistry/chang 19.2 Galvanic Cells 19.3 Standard Reduction Potentials 19.4 Spontaneity of Redox Reactions 19.5 The Effect of Concentration on Emf 19.8 Electrolysis

19.2 Galvanic Cells anode cathode oxidation reduction spontaneous redox reaction

Cell = half-cell + half – cell Oxidation Reduction Anode Cathode In Galvanic cell… Zn (s) + Cu2+ (aq) Cu (s) + Zn2+ (aq) Zn is oxidized to Zn2+ ion Zn electrode is Anode (Reducing Agent) Cu2+ is reduced to Cu  Cu electrode is Cathode (Oxidizing Agent)

Galvanic Cells The difference in electrical potential between the anode and cathode is called: cell voltage electromotive force (emf) cell potential Cell Diagram Zn (s) + Cu2+ (aq) Cu (s) + Zn2+ (aq) [Cu2+] = 1 M & [Zn2+] = 1 M Zn (s) | Zn2+ (1 M) || Cu2+ (1 M) | Cu (s) anode cathode

Standard Electrode Potentials Zn (s) | Zn2+ (1 M) || H+ (1 M) | H2 (1 atm) | Pt (s) Anode (oxidation): Zn (s) Zn2+ (1 M) + 2e- Cathode (reduction): 2e- + 2H+ (1 M) H2 (1 atm) Zn (s) + 2H+ (1 M) Zn2+ + H2 (1 atm)

19.3 Standard Reduction Potentials Standard reduction potential (E0) is the voltage associated with a reduction reaction at an electrode when all solutes are 1 M and all gases are at 1 atm. Reduction Reaction 2e- + 2H+ (1 M) H2 (1 atm) E0 = 0 V Standard hydrogen electrode (SHE)

Standard Electrode Potentials E0 = 0.76 V cell Standard emf (E0 ) cell E0 = Ecathode - Eanode cell Zn (s) | Zn2+ (1 M) || H+ (1 M) | H2 (1 atm) | Pt (s) E0 = EH /H - EZn /Zn cell + 2+ 2 0.76 V = 0 - EZn /Zn 2+ EZn /Zn = -0.76 V 2+ Zn2+ (1 M) + 2e- Zn E0 = -0.76 V

Standard Electrode Potentials E0 = 0.34 V cell E0 = Ecathode - Eanode cell Ecell = ECu /Cu – EH /H 2+ + 2 0.34 = ECu /Cu - 0 2+ ECu /Cu = 0.34 V 2+ Pt (s) | H2 (1 atm) | H+ (1 M) || Cu2+ (1 M) | Cu (s) Anode (oxidation): H2 (1 atm) 2H+ (1 M) + 2e- Cathode (reduction): 2e- + Cu2+ (1 M) Cu (s) H2 (1 atm) + Cu2+ (1 M) Cu (s) + 2H+ (1 M)

Note: The more positive E0 the greater the tendency for the substance to be reduced The half-cell reactions are reversible The sign of E0 changes when the reaction is reversed Changing the stoichiometric coefficients of a half-cell reaction does not change the value of E0

19.4 Spontaneity of Redox Reactions DG = -nFEcell n = number of moles of electrons in reaction F = 96,500 J V • mol DG0 = -nFEcell = 96,500 C/mol DG0 = -RT ln K = -nFEcell Ecell = RT nF ln K (8.314 J/K•mol)(298 K) n (96,500 J/V•mol) ln K = = 0.0257 V n ln K Ecell = 0.0592 V n log K Ecell E0 > 0 spontaneous reaction

Spontaneity of Redox Reactions

19.5 The Effect of Concentration on Cell Emf DG = DG0 + RT ln Q DG = -nFE -nFE = -nFE0 + RT ln Q DG0 = -nFE Nernst equation E = E0 - ln Q RT nF At 298 K - 0.0257 V n ln Q E E = - 0.0592 V n log Q E E =

19.8 Electrolysis is the process in which electrical energy is used to cause a nonspontaneous chemical reaction to occur.

Electrolysis of Water 19.8

Electrolysis and Mass Changes Quantitative Aspects Case (i) Na + + 1e Na 1 mol. of electron produces 1 mol of Na Atom 1 F (96500 C) Case (ii) Mg 2+ + 2e Mg 2 mol. of electron produces 1 mol of Mg Atom 2 F (2x 96500C) Case (iii) Al 3 + + 1e Al 3 mol. of electron produces 1 mol of Al Atom 3 F (3 x 96500 C)

charge ( C ) = current (A) x time (s) 1 mole of electron = 96500 coulomb 1 mol. of Na atom = 22 g 1 mol. of Mg atom = 24 g 1 mol. of Al atom = 26 g