Chapter No. 04 Moment Of Inertia.

Slides:



Advertisements
Similar presentations
CE Statics Chapter 10 – Lecture 1.
Advertisements

2E4: SOLIDS & STRUCTURES Lecture 8
EF 202, Module 4, Lecture 2 Second Moment of Area EF Week 14.
APPENDIX A MOMENTS OF AREAS
Today’s Objectives: Students will be able to:
8.0 SECOND MOMENT OR MOMENT OF INERTIA OF AN AREA
Geometrical properties of cross-sections
PARALLEL-AXIS THEOREM FOR AN AREA & MOMENT OF INERTIA FOR COMPOSITE AREAS
ME221Lecture 91 ME 221 Statics Lecture #9 Sections 9.1 – 9.6.
ME 221Lecture 191 ME 221 Statics Lecture #19 Sections Exam #2 Review.
ME 221Lecture 171 ME 221 Statics Lecture #19 Sections Exam #2 Review.
READING QUIZ 1.For a composite area, the moment of inertia equals the A)vector sum of the moment of inertia of all its parts. B)algebraic sum of the moments.
ME 221Lecture 181 ME 221 Statics Lecture #18 Sections 9.1 – 9.6.
Today’s Objectives: Students will be able to:
CTC / MTC 222 Strength of Materials
Chapter 6: Center of Gravity and Centroid
Chapter 8 Distributed Forces: Moments of Inertia
MOMENT OF INERTIA BY GP CAPT NC CHATTOPADHYAY. WHAT IS MOMENT OF INERTIA? IT IS THE MOMENT REQUIRED BY A SOLID BODY TO OVERCOME IT’S RESISTANCE TO ROTATION.
Moments of inertia for areas Previously determined centroid for an area by considering first moment of area about an axis, Previously determined centroid.
Copyright © 2010 Pearson Education South Asia Pte Ltd
Engineering Mechanics: Statics
Engineering Mechanics: Statics
MOMENT OF INERTIA Moment of Inertia:
Moment of Inertia.
Chapter 9 DISTRIBUTED FORCES: MOMENTS OF INERTIA x y y dx x The rectangular moments of inertia I x and I y of an area are defined as I x = y 2 dA I y =
STATICS MOMENTS OF INERTIA. Copyright © 2010 Pearson Education South Asia Pte Ltd Chapter Outline 1.Definitions of Moments of Inertia for Areas 2.Parallel-Axis.
8.0 SECOND MOMENT OR MOMENT OF INERTIA OF AN AREA
Moment of Inertia EF Week 15.
1 - 1 Dr.T.VENKATAMUNI, M.Tech, Ph.D PROFESSOR & HOD DEPARTMENT OF MECHANICAL ENGINEERING JEPPIAAR INSTITUTE OF TECHNOLOGY.
STROUD Worked examples and exercises are in the text Programme 21: Integration applications 3 INTEGRATION APPLICATIONS 3 PROGRAMME 21.
Mechanics of Solids PRESENTATION ON CENTROID BY DDC 22:- Ahir Devraj DDC 23:- DDC 24:- Pravin Kumawat DDC 25:- Hardik K. Ramani DDC 26:- Hiren Maradiya.
Worked examples and exercises are in the text STROUD PROGRAMME 20 INTEGRATION APPLICATIONS 3.
Patil vishal Prajapati Ashvin Prajapati vivek Pathak prakuti Qureshi zaid Guided by:-
Distributed Forces: Moments of Inertia
Distributed Forces: Moments of Inertia
What is Moment of Inertia ( MoI )?
Problem y Determine the moments of inertia of the shaded area
MOMENTS OF INERTIA FOR AREAS
Lecture Series on Strength of Materials-5
Distributed Forces: Moments of Inertia
MOMENT OF INERTIA Moment of Inertia:
Distributed Forces: Centroids and Centers of Gravity
Today’s Objectives: Students will be able to:
Statics Dr. Aeid A. Abdulrazeg Course Code: CIVL211
Engineering Mechanics: Statics
Examples.
Distributed Forces: Centroids and Centers of Gravity
Distributed Forces: Centroids and Centers of Gravity
Chapter Objectives Chapter Outline
ENGINEERING MECHANICS
Statics Dr. Aeid A. Abdulrazeg Course Code: CIVL211
CHAPTER 9 Moments of Inertia.
ENGINEERING MECHANICS
Applied Dynamics – Moment of Inertia
STATICS (ENGINEERING MECHANICS-I)
Today’s Objectives: Students will be able to:
Structure I Course Code: ARCH 208 Dr. Aeid A. Abdulrazeg
Structure I Course Code: ARCH 208 Dr. Aeid A. Abdulrazeg.
Structure I Course Code: ARCH 208 Dr.Aeid A. Abdulrazeg.
MOMENTS OF INERTIA FOR AREAS
8.0 SECOND MOMENT OR MOMENT OF INERTIA OF AN AREA
Moments of Inertia.
Moments of Inertia.
Problem y Determine the moments of inertia of the shaded area
QUIZ 7. What are the min number of pieces you will have to consider for determining the centroid of the area? 1 B) 2 C) 3 D) 4 8. For determining.
Structure I Course Code: ARCH 208 Dr. Aeid A. Abdulrazeg
Moments of Inertia.
Chapter 7 Moment of Inertia. Chapter 7 Moment of Inertia.
Moments of inertia for areas
Presentation transcript:

Chapter No. 04 Moment Of Inertia

C304.4 Determine Area Moment of Inertia of regular and composite sections.

MOMENT OF INERTIA Moment of Inertia:   The product of the elemental area and square of the perpendicular distance between the centroid of area and the axis of reference is the “Moment of Inertia” about the reference axis. Ixx = ∫dA. y2 Iyy = ∫dA. x2 y dA x y x

It is also called second moment of area because first moment of elemental area is dA.y and dA.x; and if it is again multiplied by the distance,we get second moment of elemental area as (dA.y)y and (dA.x)x.

Polar moment of Inertia (Perpendicular Axes theorem) The moment of inertia of an area about an axis perpendicular to the plane of the area is called “Polar Moment of Inertia” and it is denoted by symbol Izz or J or Ip. The moment of inertia of an area in xy plane w.r.to z. axis is Izz = Ip = J = ∫r2dA = ∫(x2 + y2) dA = ∫x2dA + ∫y2dA = Ixx +Iyy  Y x r y O x z

PERPENDICULAR AXIS THEOREM  Hence polar M.I. for an area w.r.t. an axis perpendicular to its plane of area is equal to the sum of the M.I. about any two mutually perpendicular axes in its plane, passing through the point of intersection of the polar axis and the area.

Parallel Axis Theorem dA y´ x0 x0 * G _ d y x x

( since Ist moment of area about centroidal axis = 0) _ Ixx = ∫dA. y2 _ = ∫dA (d +y')2 _ _ = ∫dA (d2+ y'2 + 2dy') = ∫dA. d2 + ∫dAy΄2 + ∫ 2d.dAy' d2 ∫dA = A.(d)2 ∫dA. y'2 = Ix0x0 2d ∫ dAy’ = 0 ( since Ist moment of area about centroidal axis = 0) _ Ix x = Ix0 x0 +Ad2

Hence, moment of inertia of any area about an axis xx is equal to the M.I. about parallel centroidal axis plus the product of the total area and square of the distance between the two axes. Radius of Gyration It is the perpendicular distance at which the whole area may be assumed to be concentrated, yielding the same second moment of the area above the axis under consideration.

rxx and ryy are called the radii of gyration Iyy = A.ryy2 Ixx = A.rxx2 ryy = √ Iyy/A And rxx = √ Ixx /A A A rxx ryy y x x rxx and ryy are called the radii of gyration

MOMENT OF INERTIA BY DIRECT INTEGRATION M.I. about its horizontal centroidal axis : RECTANGLE :   IXoXo = -d/2 ∫ +d/2 dAy2 =-d/2∫+d/2 (b.dy)y2 = bd3/12  About its base IXX=IXoXo +A(d)2 Where d = d/2, the distance between axes xx and xoxo =bd3/12+(bd)(d/2)2 =bd3/12+bd3/4=bd3/3 . dy d/2 y d x0 x0 G x x b

From similar triangles b/h = x/(h-y)  x = b . (h-y)/h h    (a) M.I. about its base :   Ixx =  dA.y2 =  (x.dy)y2 From similar triangles b/h = x/(h-y)  x = b . (h-y)/h h Ixx =  (b . (h-y)y2.dy)/h = b[ h (y3/3) – y4/4 ]/h = bh3/12 (h-y) dy h x x0 y x0 h/3 x b

(b) Moment of inertia about its centroidal axis: _ Ixx = Ix0x0 + Ad2 Ix0x0 = Ixx – Ad2 = bh3/12 – bh/2 . (h/3)2 = bh3/36

3. CIRCULAR AREA: Ix0x0 =  dA . y2 R 2 =   (x.d.dr) r2Sin2 0 0 0 0 R 2 =  r3.dr Sin2 d 0 0 R 2 = r3 dr  {(1- Cos2)/2} d 0 R 0 2 =[r4/4] [/2 – Sin2/4] 0 0 = R4/4[ - 0] = R4/4 IXoXo =  R4/4 = D4/64 d r y=rSin  x0 x0 R x x

4. SEMI CIRCULAR AREA: Ixx =  dA . y2 R  =   (r.d.dr) r2Sin2 = r3.dr  Sin2 d 0 0 R  =  r3 dr (1- Cos2)/2) d 0 0  =[R4/4] [/2 – Sin2/4] = R4/4[/2 - 0] = R4/8 y0 x0 R x0 4R/3 x x y0

About horizontal centroidal axis: Ixx = Ix0x0 + A(d)2 Ix0x0 = Ixx – A(d)2 =  R4/8 R2/2 . (4R/3)2 Ix0x0 = 0.11R4

QUARTER CIRCLE: Ixx = Iyy R /2 Ixx =   (r.d.dr). r2Sin2 0 0 R /2 0 0 R /2 = r3.dr  Sin2 d 0 0 R /2 = r3 dr  (1- Cos2)/2) d 0 0 /2 =[R4/4] [/2 – (Sin2 )/4] = R4 (/16 – 0) = R4/16 y0 y x0 x0 4R/3π x x y y0 4R/3π

Moment of inertia about Centroidal axis, _ Ix0x0 = Ixx - Ad2 = R4/16 - R2. (0. 424R)2 = 0.055R4 The following table indicates the final values of M.I. about X and Y axes for different geometrical figures.

Figure I x0-x0 I y0-y0 I xx I yy Sl.No Figure I x0-x0 I y0-y0 I xx I yy 1 bd3/12 - bd3/3 2 bh3/36 bh3/12 3 R4/4 4 0.11R4 R4/8 5 0.055R4 R4/16 b Y d x0 x0 d/2 x x Y Xo h x0 x0 h/3 x x b y0 R x0 x0 O y0 y0 4R/3π x0 x0 x x y0 y y0 x0 4R/3π 4R/3π