Modelos para datos longitudinales

Slides:



Advertisements
Similar presentations
G Lecture 10 SEM methods revisited Multilevel models revisited
Advertisements

Multilevel analysis with EQS. Castello2004 Data is datamlevel.xls, datamlevel.sav, datamlevel.ess.
1 Regression as Moment Structure. 2 Regression Equation Y =  X + v Observable Variables Y z = X Moment matrix  YY  YX  =  YX  XX Moment structure.
Topic 12: Multiple Linear Regression
Chapter 12 Inference for Linear Regression
Kin 304 Regression Linear Regression Least Sum of Squares
Structural Equation Modeling
Multi-sample Equality of two covariance matrices.
Confirmatory Factor Analysis
Missing Data Analysis. Complete Data: n=100 Sample means of X and Y Sample variances and covariances of X Y
Student Quiz Grades Test Grades 1.Describe the association between Quiz Grades and Test Grades. 2.Write the.
Copyright © 2010 Pearson Education, Inc. Slide
Simple Linear Regression. G. Baker, Department of Statistics University of South Carolina; Slide 2 Relationship Between Two Quantitative Variables If.
Simple Linear Regression
Regression Regression: Mathematical method for determining the best equation that reproduces a data set Linear Regression: Regression method applied with.
Latent Growth Curve Modeling In Mplus:
The Simple Linear Regression Model: Specification and Estimation
Statistics for the Social Sciences Psychology 340 Spring 2005 Prediction cont.
1 Regression Econ 240A. 2 Retrospective w Week One Descriptive statistics Exploratory Data Analysis w Week Two Probability Binomial Distribution w Week.
Msam07, Albert Satorra 1 Examples with Coupon data (Bagozzi, 1994)
LECTURE 16 STRUCTURAL EQUATION MODELING.
C82MCP Diploma Statistics School of Psychology University of Nottingham 1 Linear Regression and Linear Prediction Predicting the score on one variable.
Correlation 1. Correlation - degree to which variables are associated or covary. (Changes in the value of one tends to be associated with changes in the.
Relationships Among Variables
Lecture 5 Correlation and Regression
Structural Equation Modeling Continued: Lecture 2 Psy 524 Ainsworth.
Example of Simple and Multiple Regression
Multiple Sample Models James G. Anderson, Ph.D. Purdue University.
Inference for regression - Simple linear regression
Moderation in Structural Equation Modeling: Specification, Estimation, and Interpretation Using Quadratic Structural Equations Jeffrey R. Edwards University.
Stat13-lecture 25 regression (continued, SE, t and chi-square) Simple linear regression model: Y=  0 +  1 X +  Assumption :  is normal with mean 0.
Modelling non-independent random effects in multilevel models William Browne Harvey Goldstein University of Bristol.
Inferences for Regression
Managerial Economics Demand Estimation. Scatter Diagram Regression Analysis.
Regression. Population Covariance and Correlation.
Lecture 8 Simple Linear Regression (cont.). Section Objectives: Statistical model for linear regression Data for simple linear regression Estimation.
Inference for Regression Simple Linear Regression IPS Chapter 10.1 © 2009 W.H. Freeman and Company.
Analysis of Covariance (ANCOVA)
G Lecture 81 Comparing Measurement Models across Groups Reducing Bias with Hybrid Models Setting the Scale of Latent Variables Thinking about Hybrid.
Chapter 6 (cont.) Difference Estimation. Recall the Regression Estimation Procedure 2.
Environmental Modeling Basic Testing Methods - Statistics III.
Chapter 22: Building Multiple Regression Models Generalization of univariate linear regression models. One unit of data with a value of dependent variable.
1 1 Slide The Simple Linear Regression Model n Simple Linear Regression Model y =  0 +  1 x +  n Simple Linear Regression Equation E( y ) =  0 + 
Structure on means and covariances. GROWTH IN WISC SCORES McArdie and Epstein (1987) using data from R.T. Osborne and collaborators on the Wechsler Intelligence.
An Introduction to Latent Curve Models
Nonparametric Statistics
REGRESSION G&W p
Basic Estimation Techniques
Regression 11/6.
Regression 10/29.
Kin 304 Regression Linear Regression Least Sum of Squares
Correlation, Regression & Nested Models
Inferences for Regression
Inference for Regression
BPK 304W Regression Linear Regression Least Sum of Squares
BPK 304W Correlation.
I271B Quantitative Methods
Nonparametric Statistics
CHAPTER 26: Inference for Regression
No notecard for this quiz!!
Tutorial 1: Misspecification
Day 2 Applications of Growth Curve Models June 28 & 29, 2018
CHAPTER 12 More About Regression
Simple Linear Regression
Statistics II: An Overview of Statistics
a.) What score represents the 90th percentiles?
Inferences for Regression
3 basic analytical tasks in bivariate (or multivariate) analyses:
Autoregressive and Growth Curve Models
Testing Causal Hypotheses
Presentation transcript:

Modelos para datos longitudinales

Data example “We have four measures of hability, for a sample of 204 children, at ages 6,7,9 and 11 years (Osbourne and Suddick, 1972)” (see Dunn et al. p. 100) The Mean, Standard deviation, Correlation matrix: /STANDARD DEVIATIONS 6.374 7.319 7.796 10.386 /MEANS 18.034 25.819 35.255 46.593 /MATRIX 1 .809 1 .806 .850 1 .765 .831 .867 1 /LMtest /END

Single-factor model

Single-factor Model * * * * V1 V2 V3 V4 * * * * F1

Autoregressive model

Autoregressive Model * * * * V1 V2 * V4 V3 * *

EQS code: /TITLE longitudinal model (Dunn et al. p. 108) /SPECIFICATIONS CAS=204 ; VAR=4; ME=ML; ANAL = COV; /LABELS V1 = ABIL6; V2 = ABIL7; V3 = ABIL9; V4 = ABIL11; /EQUATIONS V2 = 1.0*V1+ E2; V3 = 1.0*V2 + E3 ; V4 = 1.0*V3 + E4; /VARIANCES V1 = 36*; E2 TO E4 = 1.0*; /PRINT EFFECT = YES; /STANDARD DEVIATIONS 6.374 7.319 7.796 10.386 /MEANS 18.034 25.819 35.255 46.593 /MATRIX 1 .809 1 .806 .850 1 .765 .831 .867 1 /LMtest /END

Estimates

Simplex model

Simplex Model * * * * V4 V1 V2 V3 * * F4 F3 F1 * F2 * * * *

EQS imput for simplex model

Estimates, s.e., and chi2 g.o.f test

Restricting equality of effects across time

Exercise: using the cov. Matrix below, fit a simplex model

Dynamic factor model (Dunn et al. P. 140) Judd and Milburn (1980) used a latent variable analysis to examine attitudes in a nation-wide sample of individuals who were surveyed on three occasions, in 1972, 1974 and 1976. (Dunn et al. P. 140)

Part of the data involved recording attitudes on three topics: busing- a policy designed to achieve school integration; criminals - the protection for the legal rights of those accused of crimes; jobs- whether government should guarantee jobs and standard of living. The sample consisted of 143 individuals each with four years of college education, and 203 individuals who had no college education .

college education n = 143. 1972. 1974. 1976. B. C. J. B. C. J. B. C college education n = 143 1972 1974 1976 B C J B C J B C J B 1 C .43 1 J .47 .29 1 B .79 .43 .48 1 C .39 .54 .38 .45 1 J .50 .28 .56 .56 .35 1 B .71 .37 .49 .78 .44 .59 1 C .27 .53 .18 .35 .60 .20 .34 1 J .47 .29 .49 .48 .32 .61 .53 .28 1 SD 2.03 1.84 1.67 1.76 1.68 1.48 1.74 1.83 1.54 B Busing C Criminals J Jobs

Path diagram for effects across time * * * T1 * T3 T2 * V1 V2 V3 V4 V5 V6 V7 V8 V9

EQS code /TITLE liberalism-conservatism exmple factor loadings and latent variable regression coefficients constrained to be equal across groups group 1 - four years of college education /SPECIFICATIONS GROUPS = 1; CAS=143; VAR=9; MATRIX = CORR; ANALYSIS = COV; /EQUATIONS V1 = 1*F1 + E1; ! F1 is liberalism in 1972 V2 = 1*F1 + E2; V3 = 1*F1 + E3; V4 = F2 + E4; !F2 is liberalism in 1974 !scale of F2 set to that of V4 !scale can not be set in /VARIANCE ! since F2 appears later as a depend. var V5 = 1*F2 + E5; V6 = 1*F2 + E6; V7 = F3 + E7; !F3 is liberalism in 1976, again scale .. V8 = 1*F3 + E8; V9 = 1*F3 + E9; F2 = 1*F1 + D1; !Regression of 1974 kuberakusn ib 1972 F3 = 1*F2 + D2; !Regression of 1976 liberalism on 1974 /VARIANCES F1 = 1; E1 TO E9 = 1*; D1 TO D2 = .2*; /COVARIANCES E1,E4 = .5*; E1,E7 = .5*; E2,E5 = .5*; E2,E8 = .5*; E3,E6 = .5*; E3,E9 = .5*; E4,E7 = .5*; E5,E8 =.5*; E6,E9 = .5*; /STANDARD DEVIATIONS 2.03 1.84 1.67 1.76 1.68 1.48 1.74 1.83 1.54 /MATRIX 1 .43 1 .47 .29 1 .79 .43 .48 1 .39 .54 .38 .45 1 .50 .28 .56 .56 .35 1 .71 .37 .49 .78 .44 .59 1 .27 .53 .18 .35 .60 .20 .34 1 .47 .29 .49 .48 .32 .61 .53 .28 1 /END

Estimated Time effects F2 =F2 = .932*F1 + 1.000 D1 .102 9.106 F3 =F3 = 1.003*F2 + 1.000 D2 .085 11.800 CHI-SQUARE = 47.577 BASED ON 41 DEGREES OF FREEDOM PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS 0.22257

V1 =V1 = 1.114*F1 + 1.000 E1 .113 9.897 V2 =V2 = .839*F1 + 1.000 E2 .120 6.999 V3 =V3 = 1.005*F1 + 1.000 E3 .115 8.730 V4 =V4 = 1.000 F2 + 1.000 E4 V5 =V5 = .773*F2 + 1.000 E5 .131 5.922 V6 =V6 = .907*F2 + 1.000 E6 .147 6.174 V7 =V7 = 1.000 F3 + 1.000 E7 V8 =V8 = .552*F3 + 1.000 E8 .123 4.496 V9 =V9 = .836*F3 + 1.000 E9 .142 5.890

Random walk model

Random Walk Model * * * * V4 V1 V2 V3 1 1 1 1 F4 F3 F1 F2 * * * *

EQS code for random walk model

Estimates I F1 - F1 .806*I RESIDUAL COVARIANCE MATRIX (S-SIGMA) : ABIL6 ABIL7 ABIL9 ABIL11 V 1 V 2 V 3 V 4 ABIL6 V 1 0.060 ABIL7 V 2 0.003 -0.033 ABIL9 V 3 0.000 -0.049 -0.075 ABIL11 V 4 -0.041 -0.068 -0.074 -0.095 CHI-SQUARE = 6.867 BASED ON 5 DEGREES OF FREEDOM PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS 0.23072 I F1 - F1 .806*I I .087 I I 9.226 I I I I F2 - F2 .093*I I .030 I I 3.109 I I F3 - F3 .042*I I .022 I I 1.883 I I F4 - F4 .020*I I .028 I I .703 I

Estimates of meas. Error E1 -ABIL6 .134*I I .014 I I 9.376 I I I I E2 -ABIL7 .134*I I E3 -ABIL9 .134*I I E4 -ABIL11 .134*I I

Growth curve model

Growth curve model * * * * V1 V2 V3 V4 * 1 * 1 * D1 1 * D2 1 Slope F2 Intercept F1 * 1 *

growth curve model /TITLE Dependence between ability scores at 6,7,9 and 11 Growth curve model of latent ability /SPECIFICATIONS CAS=204 ; VAR=4; ANALYSIS=MOMENT; MATRIX = CORR; ANAL = COV; /LABELS V1 = ABIL6; V2 = ABIL7; V3 = ABIL9; V4 = ABIL11; F1 = intercept; F2 = slope; /EQUATIONS V1 = F1 + E1; V2 = F1 + F2 + E2; V3 = F1 + 3*F2 + E3; V4 = F1 + 5*F2 + E4; F1 = 18*V999 + D1; F2 = 7*V999 + D2; /VARIANCES D1 = 25*; D2 = 1*; E1 TO E4 = 1.0*; /CONSTRAINTS (E1,E1 ) = (E2,E2) = (E3,E3) = (E4,E4); !/PRINT !EFFECT = YES; /STANDARD DEVIATIONS 6.374 7.319 7.796 10.386 /MEANS 18.034 25.819 35.255 46.593 /MATRIX 1 .809 1 .806 .850 1 .765 .831 .867 1 /END

Moment Matrix RESIDUAL COVARIANCE/MEAN MATRIX (S-SIGMA) : 4 VARIABLES (SELECTED FROM 4 VARIABLES), BASED ON 204 CASES. ABIL6 ABIL7 ABIL9 ABIL11 V999 V 1 V 2 V 3 V 4 V999 ABIL6 V 1 40.628 ABIL7 V 2 37.741 53.568 ABIL9 V 3 40.052 48.500 60.778 ABIL11 V 4 50.643 63.169 70.200 107.869 V999 V999 18.034 25.819 35.255 46.593 1.000 RESIDUAL COVARIANCE/MEAN MATRIX (S-SIGMA) : ABIL6 V 1 -4.237 ABIL7 V 2 1.322 6.190 ABIL9 V 3 3.633 6.587 3.895 ABIL11 V 4 14.225 17.565 13.692 29.420 V999 V999 -0.008 -0.046 0.104 -0.050 0.000 CHI-SQUARE = 47.294 BASED ON 7 DEGREES OF FREEDOM PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS LESS THAN 0.001

Estimates ABIL6 =V1 = 1.000 F1 + 1.000 E1 ABIL7 =V2 = 1.000 F1 + 1.000 F2 + 1.000 E2 ABIL9 =V3 = 1.000 F1 + 2.187*F2 + 1.000 E3 .069 31.739 ABIL11 =V4 = 1.000 F1 + 3.656*F2 + 1.000 E4 .119 30.755 INTERCEP=F1 = 18.042*V999 + 1.000 D1 .470 38.417 SLOPE =F2 = 7.822*V999 + 1.000 D2 .305 25.612

Estimates of variances E D --- --- E1 -ABIL6 8.907*I D1 -INTERCEP 31.568*I .625 I 3.725 I 14.248 I 8.474 I I I E2 -ABIL7 8.907*I D2 -SLOPE 2.028*I .625 I .361 I 14.248 I 5.621 I E3 -ABIL9 8.907*I I .625 I I 14.248 I I E4 -ABIL11 8.907*I I

Model with cov. Betw. F1 and F2 CHI-SQUARE = 16.468 BASED ON 6 DEGREES OF FREEDOM PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS 0.01145 COVARIANCES AMONG INDEPENDENT VARIABLES --------------------------------------- E D --- --- I D2 -SLOPE 4.490*I I D1 -INTERCEP .811 I I 5.538 I CORRELATIONS AMONG INDEPENDENT VARIABLES I D2 -SLOPE .561*I I D1 -INTERCEP I

/TITLE Dependence between ability scores at 6,7,9 and 11 Growth curve model of latent ability /SPECIFICATIONS CAS=204 ; VAR=4; ANALYSIS=MOMENT; MATRIX = CORR; ANAL = COV; /LABELS V1 = ABIL6; V2 = ABIL7; V3 = ABIL9; V4 = ABIL11; F1 = intercept; F2 = slope; /EQUATIONS V1 = F1 + E1; V2 = F1 + F2 + E2; V3 = F1 + 3*F2 + E3; V4 = F1 + 5*F2 + E4; F1 = 18*V999 + D1; F2 = 7*V999 + D2; /VARIANCES D1 = 25*; D2 = 1*; E1 TO E4 = 1.0*; /COVARIANCES D1,D2 = .4*; /CONSTRAINTS (E1,E1 ) = (E2,E2) = (E3,E3) = (E4,E4); !/PRINT !EFFECT = YES; /STANDARD DEVIATIONS 6.374 7.319 7.796 10.386 /MEANS 18.034 25.819 35.255 46.593 /MATRIX 1 .809 1 .806 .850 1 .765 .831 .867 1 /END

Exercice: One reason why the ability data might not show uniform linear growth is that there are practice effects in the testing; in particular, the initial test might give relatively low scores in comparison to the later tests because it was new to the children. The addition of a direct link from V999 to V1 would allow for such an effect. Does the linear growth model fit better when allowing for such a practice effect ?.

CHI-SQUARE = 14.266 BASED ON 5 DEGREES OF FREEDOM /EQUATIONS V1 = *V999 + F1 + E1; V2 = F1 + F2 + E2; V3 = F1 + 3*F2 + E3; V4 = F1 + 5*F2 + E4; F1 = 18*V999 + D1; F2 = 7*V999 + D2; MEASUREMENT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS ABIL6 =V1 = 1.000 F1 +-3.011*V999 + 1.000 E1 1.852 -1.626 ABIL7 =V2 = 1.000 F1 + 1.000 F2 + 1.000 E2 ABIL9 =V3 = 1.000 F1 + 2.918*F2 + 1.000 E3 .730 4.000 ABIL11 =V4 = 1.000 F1 + 5.296*F2 + 1.000 E4 1.624 3.262 CHI-SQUARE = 14.266 BASED ON 5 DEGREES OF FREEDOM PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS 0.01400