BINP superconducting insertion devices and their applications

Slides:



Advertisements
Similar presentations
Mezentsev Nikolay Budker Institute of Nuclear Physics
Advertisements

SuperB and the ILC Damping Rings Andy Wolski University of Liverpool/Cockcroft Institute 27 April, 2006.
CESR-c Status CESR Layout - Pretzel, Wigglers, solenoid compensation Performance to date Design parameters Our understanding of shortfall Plans for remediation.
1 Update on Focus Coil Design and Configuration M. A. Green, G. Barr, W. Lau, R. S. Senanayake, and S. Q. Yang University of Oxford Department of Physics.
ALPHA Storage Ring Indiana University Xiaoying Pang.
Development of Superconducting Magnets for Particle Accelerators and Detectors in High Energy Physics Takakazu Shintomi and Akira Yamamoto On behalf of.
Sergey Antipov, University of Chicago Fermilab Mentor: Sergei Nagaitsev Injection to IOTA ring.
BNG Industrial experience on Superconducting Undulators C. Boffo, T. Gehrard, B. Schraut, J. Steinmann, W. Walter, Babcock Noell GmbH T. Baumbach, S. Casalbuoni,
Progress on the MuCool and MICE Coupling Coils * L. Wang a, X. K Liu a, F. Y. Xu a, A. B. Chen a, H. Pan a, H. Wu a, X. L. Guo a, S. X Zheng a, D. Summers.
G.N. Kulipanov, N.A.Mezentsev, A.V. Philipchenko, K.V. Zolotarev
Short period wiggler prototype for the CLIC damping ring Alexey Bragin, Denis Gurov, Anatoly Utkin, Pavel Vobly Budker Institute of Nuclear Physics, Novosibirsk,
June 14th 2005 Accelerator Division Overview of ALBA D. Einfeld Vacuum Workshop Barcelona, 12 th -13 th September 2005 General 10 th September 2005.
Impedance and Collective Effects in BAPS Na Wang Institute of High Energy Physics USR workshop, Huairou, China, Oct. 30, 2012.
Preliminary design of SPPC RF system Jianping DAI 2015/09/11 The CEPC-SppC Study Group Meeting, Sept. 11~12, IHEP.
June 14th 2005 Accelerator Division Overview of ALBA D. Einfeld Vacuum Workshop Barcelona, 12 th -13 th September 2005 General 10 th September 2005.
1 BROOKHAVEN SCIENCE ASSOCIATES NSLS II: the Accelerator System Briefing Conventional Facilities Advisory Committee May 8 - 9, 2007 Satoshi Ozaki Director,
Update of 3.2 km ILC DR design (DMC3) Dou Wang, Jie Gao, Gang Xu, Yiwei Wang (IHEP) IWLC2010 Monday 18 October - Friday 22 October 2010 Geneva, Switzerland.
1 Flux concentrator for SuperKEKB Kamitani Takuya IWLC October.20.
1 WANG,Li/SINAP WANG Li, WANG ShuHua, LIU YiYong, SUN Sen, HU Xiao, YIN LiXin Shanghai Institute of Applied Physics, CAS, Shanghai , China Shanghai.
Permanent magnet wiggler based on NdFeB material. This wiggler type uses the same design principles as the wigglers which have been developed for PETRA.
BINP EXPERIENCE IN THE DESIGN AND PRODUCTION OF INSERTION DEVICES BUDKER INSTITUTE OF NUCLEAR PHYSICS NOVOSIBIRSK.
28-May-2008Non-linear Beam Dynamics WS1 On Injection Beam Loss at the SPring-8 Storage Ring Masaru TAKAO & J. Schimizu, K. Soutome, and H. Tanaka JASRI.
Optimized CESR-c Wiggler Design Mark Palmer, Jeremy Urban, Gerry Dugan Cornell Laboratory for Accelerator-Based Sciences and Education.
The SPS as a Damping Ring Test Facility for CLIC March 6 th, 2013 Yannis PAPAPHILIPPOU CERN CLIC Collaboration Working meeting.
Emittances Normalised r.m.s. Emittances at Damping Ring Extraction Horizontal Emittance (  m) Vertical Emittance (  m)
ANKA Synchrotron Radiation Facility 1 S.Casalbuoni, E. Huttel, WP4 Coordination Meeting , CERN, Geneva, Switzerland EuroCirCol Kickoff Meeting,
Emittance reduction by a SC wiggler in the ATF-DR September 16 th, 2009 Yannis PAPAPHILIPPOU and Rogelio TOMAS ATF2 weekly meeting.
Workshop on Accelerator R&D for Ultimate Storage Rings – Oct Nov.1 – Huairou, Beijing, China A compact low emittance lattice with superbends for.
Super Fragment Separator (Super-FRS) Machine and Magnets H. Leibrock, GSI Darmstadt Review on Cryogenics, February 27th, 2012, GSI Darmstadt.
Advanced Photon Source Undulator Technology for Ultimate Storage Rings (USRs) By Mark Jaski.
BINP tau charm plans and other projects in Turkey/China A. Bogomyagkov BINP SB RAS, Novosibirsk.
Summary of the 2014 Superconducting Undulator Workshop Jim Clarke STFC Daresbury Laboratory and The Cockcroft Institute Beam Dynamics Meets Magnets - II,
September 27, 2007 ILC Main Linac - KOF 1 ILC Main Linac Superconducting Quadrupole V. Kashikhin for Magnet group.
Coupled bunch Instabilities at ILC Damping Rings L. Wang SLAC ILC Damping Rings R&D Workshop - ILCDR06 September 26-28, 2006 Cornell University Refer to.
HTS and LTS Magnet Design and Prototyping for RAON
ESLS Workshop Nov 2015 MAX IV 3 GeV Ring Commissioning Pedro F. Tavares & Åke Andersson, on behalf of the whole MAX IV team.
Operation Status of the RF Systems and Taiwan Photon Source
Final Design Cryogenic and mechanical configurations
NSLS-II Insertion Devices
FEL SCU development at APS/ANL
Superconducting wiggler magnets for CLIC damping rings
BEAM TRANSFER CHANNELS, INJECTION AND EXTRACTION SYSTEMS
CBM magnet overview of the BINP work
Summary of Session: Magnets and undulators for light sources 2
Status of the manufacturing process of a Nb3Sn wiggler prototype
MDI and head-on collision option for electron-positron Higgs factories
Cryogenic behavior of the cryogenic system
Quench estimations of the CBM magnet
Status of the CLIC DR wiggler design and production at BINP
Karlsruhe Institute of Technology (KIT, Karlsruhe, Germany)
Challenges of vacuum chambers with adjustable gap for SC undulators
Super-c-tau factory in Novosibirsk
“Electron cooling device in the project NESR (FAIR)"
CLIC damping rings overview
Challenges for FCC-ee MDI mechanical design
Technical Summary - ANL
CASA Collider Design Review Retreat Other Electron-Ion Colliders: eRHIC, ENC & LHeC Yuhong Zhang February 24, 2010.
The design of interaction region
ERL accelerator review. Parameters for a Compton source
Специализированный источник синхротронного излучения Anka Характеристики и экспериментальные возможности.
Updated concept of the CBM dipole magnet
The superconducting solenoids for the Super Charm-Tau Factory detector
Status of CTC activities for the Damping rings
SSRF storage ring improvement in beam line phase II project
Cryogenic behavior of the magnet
Quench calculations of the CBM magnet
Budker Institute of Nuclear Physics,
Parameters Changed in New MEIC Design
JLEIC Magnet R&D Tim Michalski NP Community Panel Review of the EIC
RF Parameters for New 2.2 km MEIC Design
Presentation transcript:

BINP superconducting insertion devices and their applications A.V. Bragin, S.V. Khruschev, N.A. Mezentsev, I.V. Poletaev, V.A. Shkaruba, V.M. Syrovatin, V.M. Tsukanov, A.A. Volkov, E.B. Levichev, S.V. Sinyatkin, K.V. Zolotarev Budker Institute of Nuclear Physics, Novosibirsk, Russia

The history of superconductive ID fabrication in the Budker INP 1979 – first in the world 3.5 Tesla superconducting 20 pole wiggler (SCW) for VEPP-3 1984 – 5 pole 8 Tesla superconducting wiggler for VEPP-2 1985 – 4.5 Tesla Superconducting Wave Length Shifter (WLS) for Siberia-1, Moscow 1992 – 6 Tesla Superbend (SB) prototype for compact storage rings 1996 - 7.5 Tesla superconducting WLS for PLS, South Korea= 1997 - 7.5 T superconducting WLS with fixed point of radiation for CAMD-LSU (USA) 2000 – 7 Tesla WLS with fixed radiation point for BESSY-2, Germany 2000 – 10 Tesla WLS for Spring-8, Japan 2001 – 7 Tesla WLS with fixed radiation point for BESSY-2, Germany 2002 – 3.5 Tesla 49 pole SCW for ELETTRA, Italy 2002 – 7 Tesla 17 pole SCW for BESSY-2, Germany 2004 – 9 Tesla Superbend for BESSY-2, Germany 2005 – 13 Tesla superconducting solenoids for VEPP-2000 2005 – 2 Tesla 63 pole SCW for CLS, Canada 2006 – 3.5 Tesla 49 pole for DLS, England 2006 – 7.5 Tesla 21 pole SCW for Siberia-2, Moscow 2007 – 4.2 Tesla 27 pole SCW for CLS, Canada 2009 – 4.2 Tesla 49 pole SCW for DLS, England 2009 – 4.1 Tesla 35 pole SCW for LNLS, Brasil 2010 - 2.1 Tesla 119 pole SCW for ALBA, Spain 2012 - 4.2 Tesla SCW for Australian Light Source 2012 – 7.5 Tesla SCW for CAMD-LSU (USA) 2013 - SCW for ANKA 2013 - SCW for ANKA & CLIC with indirect cooling 2013 – 2 SCW for Siberia-2, BINP 24.11.2014 K.Zolotarev, Superconductive IDs at BINP, ESLS XXII

The history of superconductive ID fabrication in the Budker INP 1979 – first in the world 3.5 Tesla superconducting 20 pole wiggler (SCW) for VEPP-3 1984 – 5 pole 8 Tesla superconducting wiggler for VEPP-2 1985 – 4.5 Tesla Superconducting Wave Length Shifter (WLS) for Siberia-1, Moscow 1992 – 6 Tesla Superbend (SB) prototype for compact storage rings 1996 - 7.5 Tesla superconducting WLS for PLS, South Korea 1997 - 7.5 T superconducting WLS with fixed point of radiation for CAMD-LSU (USA) 2000 – 7 Tesla WLS with fixed radiation point for BESSY-2, Germany 2000 – 10 Tesla WLS for Spring-8, Japan 2001 – 7 Tesla WLS with fixed radiation point for BESSY-2, Germany 2002 – 3.5 Tesla 49 pole SCW for ELETTRA, Italy 2002 – 7 Tesla 17 pole SCW for BESSY-2, Germany 2004 – 9 Tesla Superbend for BESSY-2, Germany 2005 – 13 Tesla superconducting solenoids for VEPP-2000 2005 – 2 Tesla 63 pole SCW for CLS, Canada 2006 – 3.5 Tesla 49 pole for DLS, England 2006 – 7.5 Tesla 21 pole SCW for Siberia-2, Moscow 2007 – 4.2 Tesla 27 pole SCW for CLS, Canada 2009 – 4.2 Tesla 49 pole SCW for DLS, England 2009 – 4.1 Tesla 35 pole SCW for LNLS, Brasil 2010 - 2.1 Tesla 119 pole SCW for ALBA, Spain 2012 - 4.2 Tesla SCW for Australian Light Source 2012 – 7.5 Tesla SCW for CAMD-LSU (USA) 2013 - SCW for ANKA 2015 - SCW for ANKA & CLIC with indirect cooling 24.11.2014 K.Zolotarev, Superconductive IDs at BINP, ESLS XXII

K.Zolotarev, Superconductive IDs at BINP, ESLS XXII Superconducting multipole wigglers BESSY, Germany, 2002 17-poles, 7 Tesla superconducting wiggler ELETTRA, Italy, 2002 49-pole 3.5 Tesla superconducting wiggler CLS, Canada, 2004 63-pole 2 Tesla superconducting wiggler CLS, Canada, 2007 27- poles 4 Tesla Superconducting wiggler DLS, England, 2006 49-pole 3.5 Tesla superconducting wiggler Moscow, Siberia-2, 2007 21-pole 7.5 Tesla superconducting wiggler DLS, England, 2008 49-pole 4.2 Tesla superconducting wiggler LNLS, Brazil, 2009 35-pole 4.2 Tesla superconducting wiggler ALBA, Spain, 2010 119-pole 2.1 Tesla superconducting wiggler 24.11.2014 K.Zolotarev, Superconductive IDs at BINP, ESLS XXII

The history of superconductive ID fabrication in the Budker INP 1979 – first in the world 3.5 Tesla superconducting 20 pole wiggler (SCW) for VEPP-3 1984 – 5 pole 8 Tesla superconducting wiggler for VEPP-2 1985 – 4.5 Tesla Superconducting Wave Length Shifter (WLS) for Siberia-1, Moscow 1992 – 6 Tesla Superbend (SB) prototype for compact storage rings 1996 - 7.5 Tesla superconducting WLS for PLS, South Korea 1997 - 7.5 T superconducting WLS with fixed point of radiation for CAMD-LSU (USA) 2000 – 7 Tesla WLS with fixed radiation point for BESSY-2, Germany 2000 – 10 Tesla WLS for Spring-8, Japan 2001 – 7 Tesla WLS with fixed radiation point for BESSY-2, Germany 2002 – 3.5 Tesla 49 pole SCW for ELETTRA, Italy 2002 – 7 Tesla 17 pole SCW for BESSY-2, Germany 2004 – 9 Tesla Superbend for BESSY-2, Germany 2005 – 13 Tesla superconducting solenoids for VEPP-2000 2005 – 2 Tesla 63 pole SCW for CLS, Canada 2006 – 3.5 Tesla 49 pole for DLS, England 2006 – 7.5 Tesla 21 pole SCW for Siberia-2, Moscow 2007 – 4.2 Tesla 27 pole SCW for CLS, Canada 2009 – 4.2 Tesla 49 pole SCW for DLS, England 2009 – 4.1 Tesla 35 pole SCW for LNLS, Brasil 2010 - 2.1 Tesla 119 pole SCW for ALBA, Spain 2012 - 4.2 Tesla SCW for Australian Light Source 2012 – 7.5 Tesla SCW for CAMD-LSU (USA) 2013 - SCW for ANKA 2015 - SCW for ANKA & CLIC with indirect cooling Long period SC multipole wigglers (B0 =7-7.5 Tesla, 0~150-200 mm) Medium period SC wigglers (B0 =3.5-4.2 Tesla, 0~48-60 mm) Short period SC wigglers (B0 =2-2.2 Tesla, 0~30-34 mm) 24.11.2014 K.Zolotarev, Superconductive IDs at BINP, ESLS XXII

Vertical racetrack coils Resistance of the connection 10-10- 10-13 Ohm Advantages of horizontal racetrack coil technology Simplicity of the design Simplicity manufacturing and testing of single coil Lowest inductivity and stored energy Possibility to good thermo stabilization of the coil with using Gd2O2S powder add mixture to the epoxy compound (in wet winding technology) Disadvantage Technology not suitable for mass production of the big number of wigglers (for ex. for CLIC DR) 24.11.2014 K.Zolotarev, Superconductive IDs at BINP, ESLS XXII

Nested coils 10.11.2018 NbTi CLIC wigler, ALER 2014

K.Zolotarev, Superconductive IDs at BINP, ESLS XXII 24.11.2014 K.Zolotarev, Superconductive IDs at BINP, ESLS XXII

Current lead design 10.11.2018 NbTi CLIC wigler, ALER 2014

Cold mass support structure Cold mass is hung on Kevlar strings attached to the cold mass support base on one side and to the vacuum vessel on the other. Kevlar strings Vertical support point Vertical support points Horizontal position fixing points Support system: 3 vertical support points; 4 horizontal support points; 4 transport position stoppers Cold mass base frame Transport position keepers 24.11.2014 K.Zolotarev, Superconductive IDs at BINP, ESLS XXII

The history of superconductive ID fabrication in the Budker INP 1979 – first in the world 3.5 Tesla superconducting 20 pole wiggler (SCW) for VEPP-3 1984 – 5 pole 8 Tesla superconducting wiggler for VEPP-2 1985 – 4.5 Tesla Superconducting Wave Length Shifter (WLS) for Siberia-1, Moscow 1992 – 6 Tesla Superbend (SB) prototype for compact storage rings 1996 - 7.5 Tesla superconducting WLS for PLS, South Korea 1997 - 7.5 T superconducting WLS with fixed point of radiation for CAMD-LSU (USA) 2000 – 7 Tesla WLS with fixed radiation point for BESSY-2, Germany 2000 – 10 Tesla WLS for Spring-8, Japan 2001 – 7 Tesla WLS with fixed radiation point for BESSY-2, Germany 2002 – 3.5 Tesla 49 pole SCW for ELETTRA, Italy 2002 – 7 Tesla 17 pole SCW for BESSY-2, Germany 2004 – 9 Tesla Superbend for BESSY-2, Germany 2005 – 13 Tesla superconducting solenoids for VEPP-2000 2005 – 2 Tesla 63 pole SCW for CLS, Canada 2006 – 3.5 Tesla 49 pole for DLS, England 2006 – 7.5 Tesla 21 pole SCW for Siberia-2, Moscow 2007 – 4.2 Tesla 27 pole SCW for CLS, Canada 2009 – 4.2 Tesla 49 pole SCW for DLS, England 2009 – 4.1 Tesla 35 pole SCW for LNLS, Brasil 2010 - 2.1 Tesla 119 pole SCW for ALBA, Spain 2012 - 4.2 Tesla SCW for Australian Light Source 2012 – 7.5 Tesla SCW for CAMD-LSU (USA) 2013 - SCW for ANKA 2015 - SCW for ANKA & CLIC with indirect cooling 24.11.2014 K.Zolotarev, Superconductive IDs at BINP, ESLS XXII

Indirect cooling conception LHe vessel SC magnet He fill/vent turret 20 K radiation shield 60 K radiation shield Beam chamber thermal link to cryocooler LHe piping Direct cooled magnet (magnet in bath cryostat) Indirect cooled magnet (magnet in isolation vacuum) Advantages of indirect cooling Easy access to the magnetic system and to the beam vacuum chamber Possibility for exchanging of the elements of magnetic system (and whole system) without complex operation Possibility for exchanging the beam vacuum chamber Possibility for installing of the wigglers in the halls with lower ceilings Effective using of the magnetic gap 24.11.2014 K.Zolotarev, Superconductive IDs at BINP, ESLS XXII

K.Zolotarev, Superconductive IDs at BINP, ESLS XXII Pole gap and electron beam vertical aperture Indirect cooling magnet Magnet in insulating vacuum Direct cooling magnet with liquid helium (magnet in bath cryostat) Pole gap= V aperture + 4 mm Pole gap = V aperture + 1.5 mm 24.11.2014 K.Zolotarev, Superconductive IDs at BINP, ESLS XXII

K.Zolotarev, Superconductive IDs at BINP, ESLS XXII CLIC Damping ring 24.11.2014 K.Zolotarev, Superconductive IDs at BINP, ESLS XXII

General view ANKA/CLIC wiggler Total number of poles 72 Number of main poles 68 Number of additional poles 4 Period 51 mm Magnetic gap 18 mm Peak magnetic field on the main poles 3 T Currents 243 A x4 Stored energy 60 kJ Aperture 13 mm x Additional requirements Possibility for exchanging of the magnetic system in future Possibility for exchanging of the beam vacuum pipe Heating vacuum pipe till 90 K Heating vacuum pipe with power load up to 50 W (with keeping temperature about 40 K) Possibility of activation of the NEG-coating (up to 200o C) 24.11.2014 K.Zolotarev, Superconductive IDs at BINP, ESLS XXII

Heat pipe cooling concept T = 4 K cooler T = 300 K P = 100 bar LHe Gold coated hemisphere Magnet cooler LHe drops GHe vapor Micro pore material GHe vapor Heat pipes can provide reliable cooling of magnetic system The effective thermo conductivity of He filled pipe (100 bar, room temperature) is about 400 fold higher than for equivalent cupper link LHe Magnet 15.12.2013 Superconducting magnets for compact heavy ion gantry

Nitrogen filled heat pipe Cryogenic cooler He heat pipe Working range 3-300 K Evacuation rate 2 W N heat pipe Working range 70-300 K Evacuation rate 20 W N filed pipe can be operate like a thermal key and can be used for initial fast cooling with using first stage of cryocooler Magnet 15.12.2013 Superconducting magnets for compact heavy ion gantry

Plans and perspectives Superconducting undulators Horizontal racetrack configuration Period ~ 15 – 18 mm Indirect cooling cryostat Longitudinal gradient dipole magnets A.Wrulich & R.Nagaoka (1992) EMITTANCE MINIMIZATION WITH LONGITUDINAL DIPOLE FIELD VARIATION 24.11.2014 K.Zolotarev, Superconductive IDs at BINP, ESLS XXII

Supercompact high bright hard X-ray light source Energy E, GeV 1 Damping time   Circumference, m 24.3 tx, sec 0.0007 Revolution period, sec 8.11E-08 ty, sec 0.0011 Betatron tunes te, sec qx 3.96 Sigma_s, mm 9.0 qy 0.18 RF voltage 4.59E-01 Emittance, nm*rad 12.1 RF harmonic number 43 Betatron coupling 0.5 % RF frequency, MHz 500 Energy spread 1.40E-03 RF acceptance 2.E-02 Momentum compaction -8.16E-03 Synchrotron tune 4.9E-03 Energy loss, MeV 1.49E-01 Radiation integral Damping partition number I1, m -1.98E-01 Jx 1.53 I2, m^-1 1.06E+01 Jy I3, m^-2 2.07E+01 Je 1.47 I4, m^-1 -5.57E+00 I5, m^-1 1.33E-01 24.11.2014 K.Zolotarev, Superconductive IDs at BINP, ESLS XXII

Superconducting dipole with longitudinal variation of the field 24.11.2014 K.Zolotarev, Superconductive IDs at BINP, ESLS XXII

Superconducting dipole for BESSY-II Vertical aperture, mm Horizontal aperture, mm 30 75 Pole gap, mm 46 Operating magnetic field, T Maximum magnetic field, Т 3.3 - 8.5 9.6 Coil material Nb3Sn, NbTi Edge angle, degree 1.3 Current in coil for 8.5 T, A 264 Ramping time 0-7 Tesla, min Ramping time 0-9 Tesla, min <5 <15 Eff. magnetic length along beam, m 0.1777 Bending angle, degree 11.25 Bending radius, m 0.905 Stored energy for 8.5 T, kJ 180 Cold mass, kg 1300 Liquid He consumption ~0.5 l/h 24.11.2014 K.Zolotarev, Superconductive IDs at BINP, ESLS XXII

Thanks for you attention Acknowledgment A.V. Bragin, S.V. Khruschev, N.A. Mezentsev, E.G. Miginskya, I.V. Poletaev, V.A. Shkaruba, V.M. Syrovatin, V.M. Tsukanov, A.A. Volkov, E.B. Levichev, S.V. Sinyatkin, BINP, Novosibirsk Axel Bernhard, Erhard Huttel, Sara Casalbuoni, Peter Peiffer, Steffen Hillenbrand KIT, Karlsruhe, Daniel Schörling, Paolo Ferracin, Laura Garcia Fajardo CERN Thanks for you attention 24.11.2014 K.Zolotarev, Superconductive IDs at BINP, ESLS XXII