Activity 4: GOME2 Matthijs Krijger Ralph Snel Pieter van der Meer

Slides:



Advertisements
Similar presentations
GOME-2 polarisation data and products L.G. Tilstra (1,2), I. Aben (1), P. Stammes (2) (1) SRON; (2) KNMI GSAG #42, EUMETSAT,
Advertisements

GOME-2 FM3 (Metop-A) Instrument Review, EUMETSAT, Darmstadt, June 2012 Slide: 1 Rűdiger Lang, Rose Munro, Antoine Lacan, Richard Dyer, Marcel Dobber, Christian.
Brown Bag Lunch Lecture ABI Calibration
Validation of SCIAMACHY using POLDER as a reference 25 April 2006.
Disk-Integrated Polarization of the Moon in the Ultraviolet from SOLSTICE M. Snow, G. Holsclaw, W. McClintock, T. Woods University of Colorado/LASP
Lunar Observations of Changes in the Earth’s Albedo (LOCEA) Alexander Ruzmaikin Jet Propulsion Laboratory, California Institute of Technology in collaboration.
Blue: Histogram of normalised deviation from “true” value; Red: Gaussian fit to histogram Presented at ESA Hyperspectral Workshop 2010, March 16-19, Frascati,
ARCTAS BrO Measurements from the OMI and GOME-2 Satellite Instruments
NASA, CGMS-41, July 2013 Coordination Group for Meteorological Satellites - CGMS Calibration/validation of Operational Instruments at NASA Langley Research.
1 st post launch SCIAMACHY calibration & Verification Meeting L1b Astrium Friedrichshafen – Germany 24 July 2002 First level 1b Sun mean reference (SMR)
Comparison of Magnesium II Core-to-Wing Ratio Measurements J. Machol 1,2*, M. Snow 3, R. Viereck 4, M. Weber 5, E. Richard 3, L. Puga 4 1 NOAA/National.
1 Reflected Solar Calibration Demonstration System - SOLARIS K. Thome, D. Jennings, B. McAndrew, J. McCorkel, P. Thompson NASA/GSFC.
Recent Solar Irradiance Data From SBUV/2 and OMI Matthew DeLand and Sergey Marchenko Science Systems and Applications, Inc. (SSAI) SOLID WP-2 Workshop.
1 COST 723 WG1 Meeting 1 October 6-7, 2003 University of Bern, CH Availability of UTLS relevant SCIAMACHY data C. von.
SCIAMACHY TOA Reflectance Correction Effects on Aerosol Optical Depth Retrieval W. Di Nicolantonio, A. Cacciari, S. Scarpanti, G. Ballista, E. Morisi,
Polarization analysis in MODIS Gerhard Meister, Ewa Kwiatkowska, Bryan Franz, Chuck McClain Ocean Biology Processing Group 18 June 2008 Polarization Technology.
1 st post launch SCIAMACHY calibration & Verification Meeting L1b Astrium Friedrichshafen – Germany 24 July 2002 First level 1b Leakage current analysis.
Use of the Moon as a calibration reference for NPP VIIRS Frederick S. Patt, Robert E. Eplee, Robert A. Barnes, Gerhard Meister(*) and James J. Butler NASA.
Rutherford Appleton Laboratory Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: Initial trade-off: Height-resolved.
SORCE - Spectral Irradiance Monitor Stéphane Béland 1, J. Harder 1, M. Snow 1, G. Thuillier 2 1 LASP – University of Colorado Boulder 2 LATMOS-CNRS SOSLPEC.
Rutherford Appleton Laboratory Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: FP, 25 April 2014, ESTEC.
GSICS meeting 5-8 March 2012, Beijing, China Slide: 1 Discussion Using GOME and SCIAMACHY as re- calibration reference for Visible and Near-Infrared channels.
Thomas C. Stone U.S. Geological Survey, Flagstaff, AZ USA GSICS Research Working Group Meeting EUMETSAT 24−28 March 2014 Using the Moon as a Radiometric.
1GRWG/GDWG Annual Meeting Tsukuba 29 Feb – 4 Mar 2016 Rűdiger Lang, Rose Munro, Gabriele Poli, Antoine Lacan, Christian Retscher, Michael Grzegorski, Alexander.
Calibrating raw data of UVN instrumentation – Lessons learned for a UVN GSICS sub-group on instrument characterisation Rűdiger Lang, Rose Munro, Antoine.
CLARREO Pathfinder - Overview
Goal meeting : to inform each other about on-going/up-coming work related to CO TROPOMI to see if more/stronger collaboration is possible/needed to plan.
PLEIADES Lunar Observations Sophie Lachérade, Bertrand Fougnie
Future eumetsat missions: MTG/FCI, MTG/UVNS and EPS-SG/METimage
Lunar Radiance Calibration ABI/AHI Solar Reflective Bands
Description of the giro ON THE DETAILS OF THE IMPLEMENTATION
Proposal for (on-ground) calibration white paper
GOME-2 level 1: calibrated radiances from two Metops – slit function performance, signal forecasts and EoL activities Rűdiger Lang, Rose Munro, Antoine.
NOAA VIIRS Team GIRO Implementation Updates
UV/VIS backscattered Sun light retrievals from space born platforms
Benjamin Scarino, David R
Extending DCC to other bands and DCC ray-matching
Fangfang Yu and Xiangqian Wu
Fangfang Yu and Xiangqian Wu
Concept study GOME-2/AVHRR radiance inter-comparison
The ROLO Lunar Calibration System Description and Current Status
Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: FP, 25 April 2014, ESTEC Height-resolved aerosol R.Siddans.
Calibration Status for the GOME Instrument
GOES-16 ABI Lunar Data Preparation to GIRO
An Overview of MODIS Reflective Solar Bands Calibration and Performance Jack Xiong NASA / GSFC GRWG Web Meeting on Reference Instruments and Their Traceability.
Using SCIAMACHY to calibrate GEO imagers
Combining Vicarious Calibrations
Lunar data preparation for FY-2
GSICS UV sub-group: GOME-2 hyper-spectral radiances for calibration of imager data Rűdiger Lang, Rose Munro, Gabriele Poli, Antoine Lacan, Christian Retscher,
Toru Kouyama Supported by SELENE/SP Team HISUI calibration WG
Mina Kang1, Myoung-Hwan Ahn1, Quintus Kleipool2 and Pepijn Veefkind2
Data Preparation for ASTER
GOME-2 hyper-spectral reflectance measurements: Inter-comparison with AVHRR and Seviri Rűdiger Lang, Rose Munro, Antoine Lacan, Christian Retscher, Gabriele.
The Successor of the TOU
Update on the GIRO Benchmark
Lunar reflectance model based on SELENE/SP data
Changchun Institute of Optics Fine Mechanics and Physics
S-NPP Visible Infrared Imaging Radiometer Suite (VIIRS) Lunar Calibration using GSICS Implementation of the ROLO model (GIRO) for Reflective Solar Bands.
National Satellite Meteorological Centre
Lunar Observation Data for GIRO Landsat–8 Operational Land Imager
Definition of a benchmark for the GIRO
Lu Zhang, Peng Zhang , Xiuqing Hu, Lin Chen
TanSat/CAPI Calibration and validation
Lunar Observation Activities with a Small Satellite and a Planetary Exploration Satellite. Hodoyoshi-1 Hayabusa-2 Toru Kouyama, AIST
Scientist, Gamer, Fighter
Preliminary SCIAMACHY Lunar observations as intercalibration source
Inter-band calibration using the Moon
goes-16/17 abi lunar calibration
MERIS Level 1b processing Ludovic Bourg
Cloud trends from GOME, SCIAMACHY and OMI
Presentation transcript:

Study on validation of spectral band adjustment factors using lunar hyperspectral measurements Activity 4: GOME2 Matthijs Krijger Ralph Snel Pieter van der Meer Study funded by

The GOME-2 Lunar observations Ruediger Lang, Roger Huckle, Christian Retscher, Gabriele Poli, Rasmus Lindstrot, Antoine Lacan, Ed Trollope and Rosemary Munro

Teaser

Lunar Irradiance

Lunar Reflectance

Content GOME2 GOME2 Lunar observations Lunar Irradiance derivation Lunar variation model Issues Results Comparison GIRO

SCIAMACHY

Objective Activity 4 Derive stable lunar irradiance from GOME2

GOME2

The GOME-2 UVN instrument on Metop Measuring atmospheric composition Wavelength [nm] GOME-2 main channel transmittance Aerosol O3 HCHO SO2 BrO OClO NO2 (O2)2 H2O O2 I/I0 GOME-2: series of 3 instruments on Metop (Metop A launched in 10/2006) sun-synchronous orbit, 09:30 412 orbits (29 days) repeat cycle Global coverage 1.5 days 240 nm to 800 nm 0.25 to 0. 5 nm spectral resolution (FWHM) 4 channels with 4098 energy measurements of polarisation corrected radiances (40 x 80 km2) 2 channels with 512 energy measurements of linear polarised light in perpendicular direction (S/P) (40 x 10 km2) 240 790 Orbit file sizes GOME-2 L1B ~ 1GB IASI L1C ~ 2GB

Sun Mode Diffusor GOME2 NOTE: “Irradiance” is Lunar Irradiance not solar irradiance unless explicit

Earth Mode Scanning Mirror GOME2

Lunar Mode Fixed Mirror GOME2

Lunar Mode Moon IFOV Moon motion

Nominal Lunar Measurement

Measurements

Irradiance Derivation (all per nm per m2) R = #photons/sec/sr S = #photons = R*(L*B)*T Sum Scan ΣR I = #photons/sec I = ΣS / (B/V) I = ΣR*L*B*T / (B/V) I = ΣR*L*V*T

Modelling Lunar Variation

4 Models GOME2 Irradiance GOME2 Reflectance GOME2/GIRO Irradiance GOME2/GIRO Reflectances

Model (for each wavelength) Reproduces GIRO P[0]* 1+P[1]* (√(lunar_phase)- √(65°)) 1+P[2]*Libration_latitiude 1+P[3]*Libration_longitude 1+P[4]*Solar_longitude Exp(MJD*P[5]+MJD^2*P[6]*MJD^3*P[7]) Distance_sun_moon^P[8] Distance_sat_moon^P[9] Not used MJD-4720 (Dec 2012) Fixed Fixed

Fitting Weight invalid measurements to zero Fit degradation relative to GIRO (seed) Fit model (incl degradation) relative to GIRO Add distance dependence (P[8:9]=-2) Fit model (incl degradation) to data Remove channel overlaps Both for Reflectance and Irradiance

P[0] MJD 4720, No libration, Phase 65°

Issues Degradation Missing Data Pointing Duration Background Straylight

Degradation

Fitted Degradation Wav [nm] Conclusion: Degradation is there, but can be fitted

Model as verification Max lunar signal Lunar Slit Model

Sample contaminated Lunar measurement Channel averages

Signal as function of solar position relative to satellite Remaining signal Scatter

Straylight Spectra compared to know sources Not Moon Looks like sun Incorrect background Central Not Earth Outside

Impact estimate Conclusion: Straylight will impact relative accuracy Note: Straylight not random error!

Results

Model (for each wavelength) Reproduces GIRO P[0]* 1+P[1]* (√(lunar_phase)- √(65°)) [radians] 1+P[2]*Libration_latitiude [degrees] 1+P[3]*Libration_longitude [degrees] 1+P[4]*Solar_longitude Exp(MJD*P[5]+MJD^2*P[6]*MJD^3*P[7]) Distance_sun_moon^P[8] Distance_sat_moon^P[9] Not used MJD-4720 (Dec 2012) Fixed Fixed

Lunar Reflectance Dec 2012, No libration, Phase 65° Lunar Irradiance

Compare to GIRO

Δ/√radian

Δ/Deg

Δ/Deg

SCIAMACHY vs GOME2 550nm Lunar phase Libration

550nm GOME2 very small phase and libration range compared SCIAMACY

Conclusions Issues Stable lunar irradiance derived Degradation Missing Data Pointing Duration Background Straylight Stable lunar irradiance derived Differences relative GIRO due limited geometries

Thank you!

Extra Slides

Channel Edges

GOME-2 Level-0 to 1b specifications: PGS 7 Lunar observation geometry: Section 5.2.8

GOME-2 Level-0 to 1b specifications: PGS 7/PFS 9 Lunar observation geometry: PGS Section 5.7.2 (AG.2) Geometries provided in the L1B product MDR-1B-Moon / GEO_MOON

GOME-2 optical layout Earthshine Sun I0 (daily) Scan Mirror Scanning grating spectrometer with a random-access linear silicon photodiode array Earthshine Sun I0 (daily) Scan Mirror Calibration Unit Common (Earth/Solar/Cal) path Solar diffuser White Light Source WLS (daily) Spectral Light Source SLS (daily)

Spectral variation Blue = Kepler crater Green = Mare Humorum Red Date: 04 March 2005 Satellite: Rosetta Depicts: Three lunar spectra Copyright: ESA Three spectra of three different regions on the Moon: Blue = Kepler crater Green = Mare Humorum Red = Oceanus Procellarum

GOME2A Simular results (not shown here) Additional uncertainty Step-function degradation (2nd Throughput test) Calibration problem early mission

Recommendations Degradation Missing Data Pointing Duration Background Fact of life Missing Data Check Lv0/1 for missing data Pointing Check Flight Dynamics Duration Extend lunar measurement by 30-60sec both direction Background Investigate background from Lv0 (not Lv1) Straylight Investigate straylight at Lv0