Oxidative Phosphorylation Via the Electron Transport Chain

Slides:



Advertisements
Similar presentations
Essential Biochemistry Charlotte W. Pratt | Kathleen Cornely
Advertisements

Electron Transport and ATP Synthesis C483 Spring 2013.
Chapter 14 - Electron Transport and Oxidative Phosphorylation The cheetah, whose capacity for aerobic metabolism makes it one of the fastest animals.
Overview of oxidative phosphorylation
Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Chapter 21 Electron Transport and Oxidative Phosphorylation to accompany.
Chapter 14 (Part 1) Electron transport. Chemiosmotic Theory Electron Transport: Electrons carried by reduced coenzymes are passed through a chain of.
Electron Transport and Oxidative Phosphorylation It all reduces down to water.
Lecture 27 Exam on Friday Up to glyoxalate cycle.
1 Chapter 19 Oxidative Phosphorylation. 2 Chapter 16 Chapter 14 Chapter 19.
Overview of Citric Acid Cycle The citric acid cycle operates under aerobic conditions only The two-carbon acetyl group in acetyl CoA is oxidized to CO.
Chapter 14 - Electron Transport and Oxidative Phosphorylation
Chapter 13 &14 Energy Generation in Mitochondria.
Chapter 14 (part 2) Oxidative phosphorylation. Proton Motive Force (  p ) PMF is the energy of the proton concentration gradient The chemical (  pH=
Chapter 20 Electron Transport and Oxidative Phosphorylation
Oxidation of glucose and fatty acids to CO 2 Respiration involves the oxidation of glucose and other compounds to produce energy. C 6 H 12 O
Oxidative Phosphorylation. Definition It is the process whereby reducing equivalents produced during oxidative metabolism are used to reduce oxygen to.
OXIDATION PHOSPHORYLATION-1 BIOC DR. TISCHLER LECTURE 28.
The respiratory chain: a strategy to recover energy The mitochondrial electron transport chain functioning and control Oxidative phosphorylation Russian.
Oxidative Phosphorylation Pratt and Cornely, Chapter 15.
x C 3 2 x C 2 Cytosol Glucose pyruvate 2 x CO 2 4 x CO 2 glycolysis 1 x C 6 Mitochondrion pyruvate 3 CO 2 CAC 3.
Lecture 28 –Quiz Friday on Beta-Oxidation of Fatty acids –Electron transport chain –Electron transport cofactors –ATPase.
Electron transport. Chemiosmotic Theory Electron Transport: Electrons carried by reduced coenzymes are passed through a chain of proteins and coenzymes.
Bioenergetics and Oxidative Phosphorylation Bioenergetics : describes the transfer and utilization of energy in biological system. Electron Transport:
1 SURVEY OF BIOCHEMISTRY Electron Transport and Oxidative Phosphorylation.
AEROBIC METABOLISM II: ELECTRON TRANSPORT CHAIN Khadijah Hanim Abdul Rahman School of Bioprocess Eng, UniMAP Week 15: 17/12/2012.
The Role of Electron Transport in Metabolism
Oxidative Phosphorylation and Electron Transport Chain(ETC)
INTRODUCTION During reactions involved in fatty acid oxidation and the TCA cycle, reducing equivalents (such as electrons) are derived from sequential.
Electron transport chain Cellular respiration is a series of reactions that: -are oxidations – loss of electrons -are also dehydrogenations lost electrons.
Pyruvate Carboxylase Reversing the final steps.
Electron Transport Chain and Oxidative Phosphorylation Dr. Sooad Al-Daihan Biochemistry department.
INTER 111: Graduate Biochemistry.  Define electron transport chain, oxidative phosphorylation, and coupling  Know the locations of the participants.
OXIDATIVE PHOSPHORYLATION. Oxidative Phosphorylation  The process in which ATP is formed as a result of the transfer of electrons from NADH or FADH 2.
Electron Transport Chain (ETC) & Oxidative Phosphorylation COURSE TITLE: BIOCHEMISTRY 2 COURSE CODE: BCHT 202 PLACEMENT/YEAR/LEVEL: 2nd Year/Level 4, 2nd.
Glucose metabolism Some ATP Big bonus: NADH, FADH2 → REDUCING POWER
Oxidative Phosphorylation What is it? Process in which ATP is formed as a result of the transfer of electrons from NADH or FADH 2 to O 2 via a series of.
The Electron-Transport Chain
Electron Transport Chain (Respiratory Chain) Dr. Sumbul Fatma 1 Lecture Respiratory Block.
Mitochondrial Electron Transport The cheetah, whose capacity for aerobic metabolism makes it one of the fastest animals.
Aim: What is the electron transport chain?
Chapter 14 - Electron Transport and Oxidative Phosphorylation
Electron Transport Chain (Respiratory Chain)
ELECTRON TRANSPORT CHAIN. An electron transport chain (ETC) couples electron transfer between an electron donor (such as NADH ) and an electron acceptor.
Oxidative Phosphorylation
OXIDATIVE PHOSPHORYLATION
Electron Transport Chain and Oxidative Phosphorylation
Cellular Respiration - Conclusion
23.2 Electron Transport and ATP
The respiratory chain and Oxidative phosphorylation
Electron Transport Chain
Oxidative Phosphorylation
How do cells extract energy from glucose?
Energy production from complete oxidation
Mitochondrial Electron Transfer
Chapter 23 Metabolism and Energy Production
Chapter 10 Chem 341 Suroviec Fall 2016.
Complex Organic Molecules Simpler waste Products w/ Catabolic pathways
Aerobic Cellular Respiration
Ch 9 (Part 3): E.T.C./ Oxidative Phosphorylation
Oxidative Phosphorylation Results from Cellular Respiration
Electron Transport and Oxidative Phosphorylation
Chapter 18 Metabolic Pathways and Energy Production
The respiratory chain and Oxidative phosphorylation
Electron Transport Chain and Oxidative Phosphorylation
Electron Transport Chain and Chemiosmosis
It all reduces down to water.
The respiratory chain.
Electron Transport Chain (Respiratory Chain)
Electron Transport Chain (Respiratory Chain)
Government Degree College Bijbehara Department of Botany Prof Burhan Ahad Semester IV Topic : Electron Transport Chain (Cellular Respiration)
Presentation transcript:

Oxidative Phosphorylation Via the Electron Transport Chain

Outline 21.1 Electron Transport and Oxidative Phosphorylation at Mitochondrial Membrane 21.2 Reduction Potentials - Understand Them 21.3 - 21.7 Details of Electron Transport 21.8, 21.9 Coupling and the ATP Synthase 21.10 Inhibitors of Oxidative Phosphorylation 21.11 Uncouplers Disrupt the Coupling 21.12-21.14 Final Details

An Overview Electron Transport: Electrons carried by reduced coenzymes are passed through a chain of proteins and coenzymes to drive the generation of a proton gradient across the inner mitochondrial membrane Oxidative Phosphorylation: The proton gradient runs downhill to drive the synthesis of ATP It all happens in or at the inner mitochondrial membrane

High Eo' indicates a strong tendency to be reduced Reduction Potentials High Eo' indicates a strong tendency to be reduced Crucial equation: Go' = -nF Eo' Eo' = Eo'(acceptor) - Eo'(donor) Electrons are donated by the half reaction with the more negative reduction potential and are accepted by the reaction with the more positive reduction potential: Eo’ positive, Go' negative If a given reaction is written so the reverse is true, then the Eo' will be a negative number and Go' will be positive

Electron Transport Four protein complexes in the inner mitochondrial membrane A lipid soluble coenzyme (Coenzyme Q10 (CoQ), AKA ubiquinone (UQ)) and a water soluble protein (cyt c) shuttle between protein complexes Electrons generally fall in energy through the chain - from complexes I and II to complex IV

Complex I NADH-CoQ Reductase Electron transfer from NADH to CoQ More than 30 protein subunits - mass of 850 kD Path: NADH  FMN  Fe-S  UQ FeS  UQ Four H+ transported out per 2 e-

Succinate-CoQ Reductase Complex II Succinate-CoQ Reductase aka succinate dehydrogenase (from TCA cycle!) aka flavoprotein 2 (FP2) - FAD covalently bound four subunits, including 2 Fe-S proteins Three types of Fe-S cluster: 4Fe-4S, 3Fe-4S, 2Fe-2S Path: succinate  FADH2  2Fe2+  UQH2 Net reaction: succinate + UQ  fumarate + UQH2

CoQ-Cytochrome c Reductase Complex III CoQ-Cytochrome c Reductase CoQ passes electrons to cyt c (and pumps H+) in a unique redox cycle known as the Q cycle The principal transmembrane protein in complex III is the b cytochrome - with hemes bL and bH Cytochromes, like Fe in Fe-S clusters, are one- electron transfer agents Study Figure 21.12 - the Q cycle UQH2 is a lipid-soluble electron carrier cyt c is a water-soluble electron carrier

Complex IV Cytochrome c Oxidase Electrons from cyt c are used in a four-electron reduction of O2 to produce 2H2O Oxygen is thus the terminal acceptor of electrons in the electron transport pathway - the end! Cytochrome c oxidase utilizes 2 hemes (a and a3) and 2 copper sites Structure is now known - mostly! Complex IV also transports H+

Coupling e- Transport and Oxidative Phosphorylation This coupling was a mystery for many years Many biochemists squandered careers searching for the elusive "high energy intermediate" Peter Mitchell proposed a novel idea - a proton gradient across the inner membrane could be used to drive ATP synthesis Mitchell was ridiculed, but the chemiosmotic hypothesis eventually won him a Nobel prize Be able to calculate theG for a proton gradient (Equation 21.28)

Proton diffusion through the protein drives ATP synthesis! ATP Synthase Proton diffusion through the protein drives ATP synthesis! Two parts: F1 and F0 (latter was originally "F-o" for its inhibition by oligomycin) See Figure 21.25 and Table 21.3 for details Racker & Stoeckenius confirmed Mitchell’s hypothesis using vesicles containing the ATP synthase and bacteriorhodopsin Paul Boyer’s binding change mechanism won a share of the 1997 Nobel in Chemistry

Inhibitors of Oxidative Phosphorylation Rotenone inhibits Complex I - and helps natives of the Amazon rain forest catch fish! Cyanide, azide and CO inhibit Complex IV, binding tightly to the ferric form (Fe3+) of a3 Oligomycin and DCCD are ATP synthase inhibitors

Uncoupling e- transport and oxidative phosphorylation Uncouplers Uncoupling e- transport and oxidative phosphorylation Uncouplers disrupt the tight coupling between electron transport and oxidative phosphorylation by dissipating the proton gradient Uncouplers are hydrophobic molecules with a dissociable proton They shuttle back and forth across the membrane, carrying protons to dissipate the gradient

ATP must be transported out of the mitochondria ATP-ADP Translocase ATP must be transported out of the mitochondria ATP out, ADP in - through a "translocase" ATP movement out is favored because the cytosol is "+" relative to the "-" matrix But ATP out and ADP in is net movement of a negative charge out - equivalent to a H+ going in So every ATP transported out costs one H+ One ATP synthesis costs about 3 H+ Thus, making and exporting 1 ATP = 4H+

i.e., How many ATP made per electron pair through the chain? What is the P/O Ratio?? i.e., How many ATP made per electron pair through the chain? e- transport chain yields 10 H+ pumped out per electron pair from NADH to oxygen 4 H+ flow back into matrix per ATP to cytosol 10/4 = 2.5 for electrons entering as NADH For electrons entering as succinate (FADH2), about 6 H+ pumped per electron pair to oxygen 6/4 = 1.5 for electrons entering as succinate

Shuttle Systems for e - Most NADH used in electron transport is cytosolic and NADH doesn't cross the inner mitochondrial membrane What to do?? "Shuttle systems" effect electron movement without actually carrying NADH Glycerophosphate shuttle stores electrons in glycerol-3-P, which transfers electrons to FAD Malate-aspartate shuttle uses malate to carry electrons across the membrane

Net Yield of ATP from Glucose It depends on which shuttle is used! See Table 21.4! 30 ATP per glucose if glycerol-3-P shuttle used 32 ATP per glucose if malate-asp shuttle used In bacteria - no mitochondria - no extra H+ used to export ATP to cytosol, so: 10/3 = ~3ATP/NADH 6/3 = ~ 2ATP/FADH2