Measure Line Segments Unlike a line, a line segment, or segment, can be measured because it has two endpoints. A segment with endpoints A and B can be.

Slides:



Advertisements
Similar presentations
Warm Up Simplify – (–3) 2. –1 – (–13) 3. |–7 – 1|
Advertisements

2-2: Segments and Properties of Real Numbers
Postulates and Paragraph Proofs
Helpful properties and postulates RReflexive property SSegment and Angle addition postulate AAddition Property of Equality SSubtraction Property.
Linear Measure and Precision
1.1 Exit Ticket: Part 1 Answers
1.2 – Segments and Congruence
Objective: Find and simplify the ratio of two numbers.
Holt CA Course Similar Figures and Proportions Preparation for NS1.3 Use proportions to solve problems (e.g., determine the value of N if =, find.
DO NOW. Ruler Postulate The distance between any two points on the number line is the absolute value of the difference of their positions. AB = |a –
+ Objective: to measure segments and add segment lengths DO NOW: EVALUATE. Plot each point on a coordinate plane. 1.I -15 I 2.I 7 I 3.I I 4.I -12-(-2)
1.2 Linear Measure and Precision
Using Segments and Congruence Midpoint Formula
Holt McDougal Geometry 1-2 Measuring and Constructing Segments Drill: Tuesday, 9/3 Simplify. 1. –1 – (–13) 2. |–7 – 1| Solve each equation. 3. 2x + 3 =
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Objectives Use length and midpoint of a segment.
Do Now Draw and label a figure for each relationship:
1-2 Measuring and Constructing Segments Lesson Presentation
Geometry Lesson 1 – 2 Linear Measure Objective: Measure segments. Calculate with measures.
Section 1-4: Measuring Segments SPI 12A: Use absolute value to express distance between two points SPI 21B: Solve multi-step.
Geometry CH 1-3 Measuring angles and Segments End of Lecture / Start of Lecture mark.
Holt McDougal Geometry 4-4 Congruent Triangles 4-4 Congruent Triangles Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz.
Success Criteria:  I can use number operations to find and compare lengths  I can use the ruler and segment addition postulate to reason about length.
Holt CA Course Similar Figures and Proportions Preparation for NS1.3 Use proportions to solve problems (e.g., determine the value of N if =, find.
1.2 Linear Measure and Precision Objectives: Measure segments and determine accuracy of measurement. Compute with measures.
Segments, Rays, Lines, and Planes 1-4. Segments  The part of a line consisting of two endpoints and all points between them AB or BA.
Bellringer. 1.4 Measuring Segments and Angles Postulate 1-5 Ruler Postulate.
How to find the lengths of segments. Chapter 1.5GeometryStandard/Goal 2.2.
1-3 Segments, Rays, and Distance
Properties of Tangents
CHAPTER 1 SECTION 5.
4-6 Isosceles And Equilateral Triangles
1-2 Measuring and Constructing Segments Warm Up Lesson Presentation
Measuring and Constructing Segments
Warm UP.
Lesson 1.2 Linear Measurement.
Do Now: 1) x = 8 2) x = 14 3) x = 6, –6 4) x = 9, –6.
Similar figures are figures that have the same shape but not necessarily the same size. The symbol ~ means “is similar to.” 1.
2-5 Reason Using Properties from Algebra
Find m1. A. 115 B. 105 C. 75 D Minute Check 1.
Midpoint and Distance in the Coordinate Plane
1-2 Measuring and Constructing Segments Warm Up Lesson Presentation
Measuring Segments 1-3 (New Orleans Style). Measuring Segments 1-3 (New Orleans Style)
WARM UP.
1.1 SEGMENT ADDITION This stuff is AWESOME!.
Linear Measure Line Segment - A measurable part of a line that consists of two points, called the endpoints, and all the points between them. A segment.
Name three collinear points.
1-2 Measuring and Constructing Segments Warm Up Lesson Presentation
1.5 Segments & Their Measures
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Drill: Tuesday, 9/6 Simplify – (–3) 2. –1 – (–13) 3. |–7 – 1|
Name three collinear points.
1-2 Measuring & Constructing Segments
FG, GH, FH, F, G, H Warm Up 1. Name all sides and angles of ∆FGH.
Drill: Tuesday, 9/3 Simplify. 1. –1 – (–13) 2. |–7 – 1|
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Congruent Triangles Warm Up Lesson Presentation Class Practice 5-2
Objectives Use length and midpoint of a segment.
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
1-2 Measuring and Constructing Segments Warm Up Lesson Presentation
Warm Up Solve each equation. 1. 2x – 6 = 7x – /4 x – 6 = 220
1-2 Measuring and Constructing Segments Warm Up Lesson Presentation
Find m1. A. 115 B. 105 C. 75 D Minute Check 1.
Exercise Compare by using >,
1-2 Measuring and Constructing Segments Warm Up Lesson Presentation
Do Now 1/6/14 Copy HW in your planner.
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Objectives Use length and midpoint of a segment.
Lines, rays and line segments
Presentation transcript:

Measure Line Segments Unlike a line, a line segment, or segment, can be measured because it has two endpoints. A segment with endpoints A and B can be named AB or BA. The length or measure of AB is written as AB A B mm 1 2 3 4 AB is about 28 millimeters long.

Calculate Measures Measures are real numbers, so all arithmetic operations can be used with them. We know that the whole usually equals the sum of its parts. This is also true of line segments in geometry. Betweenness of Points Point M is between points P and Q if and only if P, Q, and M are collinear and PM + MQ = PQ Q M P

Example 1 - Find Measurements 1. Find AC AC is the measure of AC A 3.3 cm B 3.4 cm C AC can be found by adding AB and BC AB + BC = AC Sum of the parts = whole 3.3 + 3.4 = AC Substitution 6.7 = AC Add

Example 2 - Find Measurements 2. Find DE DE is the measure of DE F 3 E D 12 AC can be found by adding AB and BC DE + EF = DF Sum of the parts = whole DE + 3 = 12 Substitution DE + 3 - 3 = 12 - 3 Subtract 3 from each side DE = 9 Simplify

Example 3 - Find Measurements 3. Find y and PQ if P is between Q and R, PQ = 2y, QR = 3y + 1, and PR = 21 3y + 1 2y 21 Q P R QR = QP + PR 3y + 1 = 2y + 21 Substitute known values 3y + 1 -1 = 2y + 21 – 1 Subtract one from each side 3y = 2y + 20 Simplify 3y – 2y = 2y + 20 – 2y Subtract 2y from each side y = 20 Simplify PQ = 2y Given PQ = 2(20) y = 20 PQ = 40 multiply

Key Concept Congruent Segments Words Two segments having the same measure are congruent Model XY = PQ Symbol = is read is congruent to Red slashes on the figure also indicate that the segments are congruent Y X P Q

Example 4 - Find Measurements Find RS and ST 6x - 5 2x + 3 R S T 30

Example 5 - Find Measurements Find a, RT 7a 12a R S T 28

Example 6 - Find Measurements Find x, RS and ST 2x 3x R S T 25

Example 7 - Find Measurements Find x, RS and ST 3y + 1 2y R S T 21

Example 8 - Find Measurements Find x, RT and ST 12 2x R S T 5x + 10

Example 9 - Find Measurements Find y, RS and ST 4y - 1 2y - 1 R S T 5y