Figure 2. A patient with multifocal nodular lesions diagnosed with CNS tuberculosis A patient with multifocal nodular lesions diagnosed with CNS tuberculosis.

Slides:



Advertisements
Similar presentations
Neurology Resident and Fellow Section
Advertisements

Figure 2. MRI features of patients with MS who had antibodies to myelin oligodendrocyte glycoprotein MRI features of patients with MS who had antibodies.
Figure 4 Paradoxical immune reconstitution inflammatory syndrome
Figure 1 Initial brain imaging (A–C) patient 1; (D–F) patient 2; (G–I) patient 3; (J–L) patient 4; and (M) patient 2. Initial brain imaging (A–C) patient.
Reversible posterior leukoencephalopathy syndrome and silent cerebral infarcts are associated with severe acute chest syndrome in children with sickle.
Figure 3 Brain MRI findings in patients with MOG-Ab Extensive brain lesions with large diameter (A and B), posterior reversible encephalopathy–like lesions.
Figure 4 Neuromyelitis optica spectrum disorder brain lesions
Figure 1 Brain MRI findings in the present case
Hiroki Yamada, Kazuyuki Saito, Mitsuhiko Hokari, Shuta Toru 
Figure 4. Brain imaging and neuropathologic demonstration of Epstein-Barr virus (EBV) encephalitis in patient PT-10 Brain imaging and neuropathologic demonstration.
Figure 2 Evolution of MRI abnormalities in faciobrachial dystonic seizures Axial fluid- attenuated inversion recovery (FLAIR)-weighted images from patient.
Figure 2 Association of serum IgG reactivity with MRI measures of disease severity Association of serum IgG reactivity with MRI measures of disease severity.
Figure Neuroimaging and pathology
Figure 1 Coronal MRI images showing the evolution of white matter abnormality and atrophy of patient 1 Coronal MRI images showing the evolution of white.
Figure Facial photograph during headache attack and brain and upper cervical cord MRI Facial photograph during headache attack and brain and upper cervical.
Figure Brain MRI of the patient throughout the disease course(A) Brain MRI at the time of cerebral toxoplasmosis diagnosis (a) and after 1 month of toxoplasmosis.
Volume 52, Issue 6, Pages (June 2015)
Figure 3 Example of venous narrowing
Figure 1 MRI head in faciobrachial dystonic seizures (A) Axial fluid-attenuated inversion recovery image from patient 3 in table 2 shows T2-weighted hyperintensity.
Figure Radiographic and histopathologic findings (A) Brain MRI at presentation shows multiple areas of T2 hyperintensity in the mesial temporal lobes,
Figure 1. Prebiopsy and postbiopsy MRI
Figure 3 MRI findings in opportunistic infections of the CNS
Figure Brain MRI and biopsy specimens from the pontine lesion
Figure 5. A patient with focal pachymeningitis and Tolosa-Hunt-like syndrome A patient with focal pachymeningitis and Tolosa-Hunt-like syndrome (A) Neuroimaging.
Figure Radiologic and histopathologic findings in a patient with IgG4-related intracranial hypertrophic pachymeningitis(A–D) Radiologic findings over 10.
Figure 2 Brain biopsy Brain biopsy (A) Double staining with anti-aquaporin-4 (AQP4) antibody (dark green) and Luxol fast blue (blue) is shown. Loss of.
Figure Nuclear Nrf2 expression after fumarate therapy A new left occipital fluid-attenuated inversion recovery hyperintense (A), T1 hypointense (B), and.
Figure 1 MRI, pathology, and EEG findings(A) Axial fluid-attenuated inversion recovery (FLAIR) MRI sequences of the brain showing right frontal and parietal.
Figure 4 Comparison of 7.0T and 3.0T MRI (patients 5 and 6)‏
Figure 1 Neuropathologic examination of brain areas with normal MRI appearance and with gadolinium enhancement (patient 1)‏ Neuropathologic examination.
Figure MRIs and histopathology of the biopsy specimens
Figure 2 T2-weighted and subtraction images
Figure 2 Exemplary MRI of a patient with contrast enhancement on postcontrast FLAIR MRI of a 54-year-old patient with viral meningitis caused by varicella-zoster.
Figure 2 7T MRI can differentiate between early PML and MS lesions Two different patterns of brain lesions were observed using 7T MRI: ring-enhancing lesions.
Figure MRI and immunologic findings
Figure 2 Histochemical and immunohistochemical staining and electron microscopic examination of structures in the brain biopsy Hematoxylin & eosin staining.
Figure 2 Histopathologic findings of patients with both inflammatory myopathy and myasthenia gravis Histopathologic findings of patients with both inflammatory.
Figure MRI and neuropathologic characteristics of the tumefactive demyelinating lesion in our patient MRI and neuropathologic characteristics of the tumefactive.
Figure 3 Ultra-high-field MRI at 7.0T (patients 5 and 6)‏
Figure MRI and histology of demyelinating lesion(A) Symmetric T2 hyperintensity in the midbrain with relative sparing of cerebral peduncles. MRI and histology.
Figure Radiologic and pathologic findings Fluid-attenuated inversion recovery (FLAIR) sequence with a single large T2-hyperintense signal involving the.
Figure 2 Example of venous narrowing
Figure 1 MRI of inflammatory myelitis before and after treatment
Figure 1 Radiologic features of human myelin oligodendrocyte glycoprotein immunoglobulin G–positive patients with cranial nerve involvement Radiologic.
Figure 3. Brain imaging and neuropathologic studies in patient PT-5 diagnosed with progressive multifocal leukoencephalopathy Brain imaging and neuropathologic.
Figure 2 Cerebral and spinal MRI (A) Restricted diffusion of both optic nerves (arrows) on diffusion-weighted and apparent diffusion coefficient imaging.
Figure Genetic deletion and MRI changes with EHMT1 deletion
Figure 2 Pathologic diagnosis of CAA-related vascular inflammation Hematoxylin & eosin staining (A) revealed focal intramural inflammation including lymphocytes,
Figure MRI brain 6 weeks post admission (A–C) Symmetrical high signal changes on fluid-attenuated inversion recovery sequences predominantly affecting.
Figure 1 Evolution of MRI findings during interleukin (IL)–7 therapy
Figure 1 Imaging of disease onset and treatment response Repeat MRI scans including fluid-attenuated inversion recovery (FLAIR) (A) and T2 fast field echo.
Figure Leptomeningeal inflammationPostcontrast T1-weighted MRI: abnormal leptomeningeal enhancement over the frontoparietal lobes and interhemispheric.
Figure 1 Radiologic features of patients with white matter syndromes in association with NMDA receptor antibodies Radiologic features of patients with.
Figure 1 MRI findings over time
Figure 1 Brain MRI Brain MRI (A) Axial fluid-attenuated inversion-recovery images show perilesional edema in both cerebellar hemisphere and hypointense.
Figure Brain MRI findings before and during appearance of lymphoproliferative disorder and pathology findings of cerebellar lesion Brain MRI findings before.
Figure MRI brain comparison prior and after treatment and brain biopsy findings MRI brain comparison prior and after treatment and brain biopsy findings.
Figure Spinal cord imaging (A, B) Sagittal and axial T2-weighted cervical spine MRI demonstrating hyperintensities in the central gray matter of patient.
Figure 2 Brain biopsy of 2 patients with anti-MOG encephalitis initially misdiagnosed with small vessel CNS vasculitis Brain biopsy of 2 patients with.
Figure 1 Detailed overview of treatment course and paraclinical findings Maximum intensity projection maps of supratentorial inversion recovery images.
Figure 1 Imaging and histopathologic characteristics of patients with CNS-FHL Imaging and histopathologic characteristics of patients with CNS-FHL FLAIR.
Figure Rapid progression of lesions after natalizumab treatment(A) MRI from February Rapid progression of lesions after natalizumab treatment(A)
Figure A 57-year-old man with relapsing-remitting MS (RRMS) and new-onset ataxia A 57-year-old man with relapsing-remitting MS (RRMS) and new-onset ataxia.
Figure FDG-PET, lymph node biopsy, and brain MRI
Figure 4 Patient 3 MRI evolution over time
Figure 3 Patient 2 MRI evolution over time before relapse
Figure 2 Patient 1 MRI evolution over time
Figure 1 MRI of both patients with IgG4-HP and spinal cord arteriography of the first patient MRI of both patients with IgG4-HP and spinal cord arteriography.
Figure 1 Axial FLAIR brain MRI obtained on admission to the ICU demonstrated (A1) old hyperintense subcortical lesions (arrowhead), new superimposed on.
Figure 1 MRIs MRIs (A and B) Axial FLAIR images of the brain demonstrate multifocal parenchymal lesions including the right hippocampus, right midbrain,
Presentation transcript:

Figure 2. A patient with multifocal nodular lesions diagnosed with CNS tuberculosis A patient with multifocal nodular lesions diagnosed with CNS tuberculosis (A) Prebiopsy brain MRI in patient PT-8 shows multifocal subcortical and deep white matter lesions in fluid-attenuated inversion recovery (FLAIR) MRI. Several focal nodular enhancing lesions are seen in T1-weighted + gadolinium (Gad) MRI. A brain biopsy targeted a nodular lesion in the left posterior frontal-parietal region (yellow circles). Subsequent brain MRIs demonstrate a dramatic improvement of the lesions 23 days after biopsy and 15 days after instauration of the anti-TB medications. (B) Diagrammatic representation of the time profile for biopsy processing for neuropathology and next-generation sequencing (NGS) diagnosis in PD-8. Although histologic studies were able to establish the presence of a granulomatous inflammation immediately after biopsy, a more comprehensive neurohistologic analysis completed 6 days after biopsy failed to demonstrate infectious pathogens. NGS diagnosis was established 7 days after biopsy, confirming the presence of Mycobacterium tuberculosis, a finding that was used to support the treatment with antituberculous medication and ruled out the presence of Nocardia infection. (C) Histologic demonstration of granulomatous inflammation in hematoxylin & eosin stains. (D) Grocott methenamine silver stain is negative for fungal species. Similarly, Ziehl-Neelsen stain for acid-fast bacilli (E) is negative. Steven L. Salzberg et al. Neurol Neuroimmunol Neuroinflamm 2016;3:e251 © 2016 American Academy of Neurology