Ab initio calculations of highly excited NH3 levels

Slides:



Advertisements
Similar presentations
Modelling Water Dimer Band Intensities and Spectra Matt Barber Jonathan Tennyson University College London 10 th February 2011
Advertisements

Philosophical Transactions A
Jonathan Tennyson Physics and Astronomy, University College London AELG-fest July 2010 Spectroscopic linelists for hot molecules of astrophysical importance.
Jonathan Tennyson Physics and Astronomy, University College London Ohio, June 2011 Molecular line lists for exoplanet & other atmospheres Artist’s impression.
Analysis of an 18 O and D enhanced lab water spectrum using variational calculations of HD 18 O and D 2 18 O spectra Michael J Down - University College.
A L INE L IST FOR H YDROGEN S ULPHIDE (H 2 S) Ala’a A. A. Azzam J. Tennyson and S. Yurchencko Department of Physics and Astronomy, University College London,
Spectroscopy for Hot Super- Earth Exoplanets P. F. Bernath and M. Dulick Department of Chemistry & Biochemistry Old Dominion University, Norfolk, VA.
D.L. KOKKIN, N.J. REILLY, J.A. JOESTER, M. NAKAJIMA, K. NAUTA, S.H. KABLE and T.W. SCHMIDT Direct Observation of the c State of C 2 School of Chemistry,
Theoretical work on the water monomer and dimer Matt Barber Jonathan Tennyson University College London September 2009.
A. Barbe, M.R. De Backer-Barilly, Vl.G. Tyuterev, A. Campargue 1, S.Kassi 1 Updated line-list of 16 O 3 in the range 5860 – 7000 cm -1 deduced from CRDS.
Modelling Water Dimer Band Intensities and Spectra Matt Barber Jonathan Tennyson University College London 29 th September 2010
Towards Theoretical Spectroscopy of the Water Dimer Ross E. A. Kelly, Matt J. Barber, and Jonathan Tennyson Department of Physics and Astronomy UCL Gerrit.
Simulating the spectrum of the water dimer in the far infrared and visible Ross E. A. Kelly, Matt J. Barber, Jonathan Tennyson Department of Physics and.
Theoretical work on the water monomer Matt Barber Jonathan Tennyson University College London
High-accuracy ab initio water line intensities Lorenzo Lodi University College London Department of Physics & Astronomy.
Benjamin McCall and Takeshi Oka University of Chicago Therese R. Huet Universite de Lille James K. G. Watson National Research Council of Canada Overtone.
EXPERIMENTAL ABSORPTION SPECTRA OF HOT CH 4 IN THE PENTAD AND OCTAD REGION ROBERT J. HARGREAVES MICHAEL DULICK PETER F.
IR EMISSION SPECTROSCOPY OF AMMONIA: LINELISTS AND ASSIGNMENTS. R. Hargreaves, P. F. Bernath Department of Chemistry, University of York, UK N. F. Zobov,
Vibration-rotation spectra from first principles Lecture 2: Calculations of spectroscopic accuracy Jonathan Tennyson Department of Physics and Astronomy.
Calculation of rovibrational H 3 + lines. New level of accuracy Slides of invited talk at Royal Society conference on H 3 + Oleg L. Polyansky 1,2 1 Institute.
Towards perfect water line intensities Lorenzo Lodi University College London, Dept of physics & Astronomy, London, UK.
VADIM L. STAKHURSKY *, LILY ZU †, JINJUN LIU, TERRY A. MILLER Laser Spectroscopy Facility, Department of Chemistry, The Ohio State University 120 W. 18th.
New High Precision Linelist of H 3 + James N. Hodges, Adam J. Perry, Charles R. Markus, Paul A. Jenkins II, G. Stephen Kocheril, and Benjamin J. McCall.
Jonathan Tennyson Physics and Astronomy, University College London Columbus June 2013 Molecular line lists for exoplanets and other atmosheres Artist’s.
ExoMol: molecular line lists for astrophysical applications
Jonathan Tennyson Physics and Astronomy UCL Paris, Nov 2008 Molecular linelists for extrasolar planets Artist’s impression of HD189733b C. Carreau, ESA.
Calculating the infrared spectra of hot astrophysical molecules SELAC, May 2005 Jonathan Tennyson University College London.
Astronomical spectroscopy Lecture 1: Hydrogen and the Early Universe Jonathan Tennyson Department of Physics and Astronomy Helsinki University College.
Emission Spectra of H 2 17 O and H 2 18 O from 320 to 2500 cm -1 Semen MIKHAILENKO 1, Georg MELLAU 2, and Vladimir TYUTEREV 3 1 Laboratory of Theoretical.
Theoretical Modelling of the Water Dimer: Progress and Current Direction Ross E. A. Kelly, Matt Barber, & Jonathan Tennyson Department of Physics & Astronomy.
“Global Fit” of the high resolution infrared data of D 2 S and HDS molecules O. N. Ulenikov, E. S. Bekhtereva Physical Chemistry, ETH-Zurich, CH-8093 Zurich,
Predicting half-widths and line shifts for water vapor transitions on the HITEMP database Robert R. Gamache a, Laurence S. Rothman b, and Iouli E. Gordon.
QED of H 3 + Oleg L. Polyansky 1,2 1 Institute of Applied Physics, Russian Academy of Sciences, Uljanov Street 46, Nizhnii Novgorod, Russia Department.
Xinchuan Huang, 1 David W. Schwenke, 2 Timothy J. Lee 2 1 SETI Institute, Mountain View, CA 94043, USA 2 NASA Ames Research Center, Moffett Field, CA 94035,
Towards experimental accuracy from the first principles Ab initio calculations of energies of small molecules Oleg L. Polyansky, L.Lodi, J.Tennyson and.
Evaluation of the Experimental and Theoretical Intensities of Water- Vapor Lines in the 2 µm Region Using Spectra from the Solar- Pointing FTS Iouli Gordon,
61th Ohio State University Symposium on Molecular Spectroscopy June 19–23, 2006 GLOBAL FREQUENCY AND INFRARED INTENSITY ANALYSIS OF 12 CH 4 LINES IN THE.
Near-Infrared Spectroscopy of H 3 + Above the Barrier to Linearity Jennifer L. Gottfried Department of Chemistry, The University of Chicago *Current address:
Line list of HD 18 O rotation-vibration transitions for atmospheric applications Semen MIKHAILENKO, Olga NAUMENKO, and Sergei TASHKUN Laboratory of Theoretical.
LASER PHOTODISSOCIATION SPECTRA OF THE ANILINE-ARGON CATIONIC CLUSTER IN THE NEAR INFRARED T. PINO, S. DOUIN, Ph. BRECHIGNAC Laboratoire de Photophysique.
Jonathan Tennyson Physics and Astronomy, University College London Emory October 2012 Molecular line lists for exoplanets and other atmospheres Artist’s.
AYTY: A new hot line- list for formaldehyde A. F. Al-Refaie, S. N. Yurchenko, A. Yachmenev, J. Tennyson Department of Physics Astronomy - University College.
Xinchuan Huang, 1 David W. Schwenke, 2 Timothy J. Lee 2 1 SETI Institute, Mountain View, CA 94043, USA 2 NASA Ames Research Center, Moffett Field, CA 94035,
EXPERIMENTAL TRANSMISSION SPECTRA OF HOT AMMONIA IN THE INFRARED Monday, June 22 nd 2015 ISMS 70 th Meeting Champaign, Illinois EXPERIMENTAL TRANSMISSION.
Progress Towards a High-Precision Infrared Spectroscopic Survey of the H 3 + Ion Adam J. Perry, James N. Hodges, Charles Markus, G. Stephen Kocheril, Paul.
Laser Spectroscopy of the C 1 Σ + – X 1 Σ + Transition of ScI ZHENWU LIAO, MEI YANG, MAN-CHOR CHAN Department of Chemistry, The Chinese University of Hong.
SO 3 Forbidden rotational spectrum Rovibrational energy cluster formation.
High-Resolution Near-Infrared Spectroscopy of H 3 + Above the Barrier to Linearity Jennifer Gottfried and Takeshi Oka University of Chicago Benjamin J.
JWST Spectroscopy of transiting planets Drake Deming University of Maryland at College Park K2 Science Conference, November 5, 2015.
HOT EMISSION SPECTRA FOR ASTRONOMICAL APPLICATIONS: CH 4 & NH 3 R. Hargreaves, L. Michaux, G. Li, C. Beale, M. Irfan and P. F. Bernath 1 Departments of.
EXPERIMENTAL LINE LISTS OF HOT METHANE Image credit: Mark Garlick MONDAY 22 nd JUNE 2015 ROBERT J. HARGREAVES MICHAEL DULICK PETER F.
Jonathan Tennyson Physics and Astronomy, University College London Hitran meeting World Cup 2010 Calculating the spectroscopic behaviour of hot molecules.
Characterisation of hot Jupiters by secondary transits observed with IRIS2 Lucyna Kedziora-Chudczer (UNSW) George Zhou (Harvard-Smithsonian CfA) Jeremy.
Infrared spectroscopy of planetological molecules Isabelle Kleiner Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), Créteil, France.
Oleg L. Polyansky and Jonathan Tennyson
A New Line List for A2Σ+-X2П Electronic Transition of OH
Z. Reed,* O. Polyansky,† J. Hodges*
Andy Wong Robert J. Hargreaves Peter F. Bernath Michaël Rey
Theoretical Prediction of the Rotational Constants for
M. Rezaei, J. George, L. Welbanks, and N. Moazzen-Ahmadi
GEORG MELLAU1,2 and ROBERT FIELD2
Single Vibronic Level (SVL) emission spectroscopy of CHBr: Vibrational structure of the X1A and a3A  states.
Xianming Liu, Paul V. Johnson, Charles P. Malone
Laser spectroscopy and ab initio calculations on TaF
Fourier Transform Emission Spectroscopy of CoH and CoD
A. M. Daly, B. J. Drouin, J. C. Pearson, K. Sung, L. R. Brown
Fourier Transform Infrared Spectral
How many moles of water are made by
F H F O Semiexperimental structure of the non rigid BF2OH molecule (difluoroboric acid) by combining high resolution infrared spectroscopy and ab initio.
Jonathan Tennyson, Sergei Yurchenko and Oleg Polyansky
Presentation transcript:

Ab initio calculations of highly excited NH3 levels Oleg Polyansky Physics and Astronomy University College London Urbana June 2016 Image credit Shutterstock

Completeness: Absorption of ammonia (T=300 K) BYTe Less than 30,000 NH3 lines are known experimentally: our list contains 1.1 billion lines, or about 40,000 times as many! They represent all the allowed transitions between 1.2 million upper and lower ro-vibrational states, whose individual quantum numbers are detailed in the list. For comparison, it is worth noting that our earlier T=300 K NH3 line list comprises only 3.25 million transitions between 184,400 states. It has an upper energy cut-off of 12,000 cm-1 and a maximum rotational quantum number J=20. Less than 30,000 NH3 lines known experimentally: BYTe contains 1.1 billion lines, about 40,000 times as many! S.N. Yurchenko, R.J. Barber & J. Tennyson, Mon. Not. R. astr. Soc., 413, 1828 (2011) 2

Frontier Problems in Exoplanet Characterization Non-equilibrium processes in exoplanet atmospheres (Stevenson et al. 2010; Madhusudhan & Seager 2011; Moses et al. 2013) CH4, CO, NH3 Constraints on thermal inversions in hot Jupiters (Fortney et al. 2008; Spiegel et al. 2009) TiO, VO, H2S C/O ratios and Carbon-rich atmospheres (Fortney et al. 2008; Spiegel et al. 2009) H2O, CO, HCN, CH4, C2H2,TiH, FeH Constraints on exoplanet formation conditions (Madhusudhan et al. 2011; Oberg et al. 2011) H2O, CO, CH4 Atmospheres and interiors of super-Earths (Bean et al. 2011; Desert et al. 2011; Miller-Ricci Kempton et al. 2011 ) H2O, CO2 Frontier Problems in Exoplanet Characterization Polish this slide. Order the points properly, etc.. Slide courtesy of N Madhusudhan (Cambridge)

Results Hot Jupiter, eclipse Retrieve majority of temperature profile, H2O, CO2 and CH4 well. Not so good at CO and NH3 – not so many absorption lines and those present are contaminated by H2O/CO2. Only upper limit on CO and NH3 achievable where VMR falls below 100 ppmv. Barstow et al. 2013a

Transmission of main candidate molecules (H2O, CO2, CO, CH4,NH3)

Completeness: Absorption of ammonia (T=300 K) BYTe Less than 30,000 NH3 lines are known experimentally: our list contains 1.1 billion lines, or about 40,000 times as many! They represent all the allowed transitions between 1.2 million upper and lower ro-vibrational states, whose individual quantum numbers are detailed in the list. For comparison, it is worth noting that our earlier T=300 K NH3 line list comprises only 3.25 million transitions between 184,400 states. It has an upper energy cut-off of 12,000 cm-1 and a maximum rotational quantum number J=20. Less than 30,000 NH3 lines known experimentally: BYTe contains 1.1 billion lines, about 40,000 times as many! S.N. Yurchenko, R.J. Barber & J. Tennyson, Mon. Not. R. astr. Soc., 413, 1828 (2011) 6

H2OF+H2O H2F+ NH3 H3O+ CH4 H2O H2F+ NH3 H3O+ CH4 Молекулы с числом электронов : 10 H2OF+H2O H2F+ NH3 H3O+ CH4 H2O H2F+ NH3 H3O+ CH4 Вариационные программы: TROVE (3,4 атома) DVR3D (3 атом)

Figure 1. Schematic energy level diagram employed in experiment. Our prediction 41 146.0 cm-1 Global ab initio PES so far ~10 cm-1

H2O pokazatel 0 1 0 1594.74 0.01 3 0 2 17458.21 0.06 0 0 1 3755.92 -0.02 2 1 3 18989.95 -0.05 0 2 0 3151.63 0.04 1 0 4 17748.1 -0.04 0 1 1 5331.26 0.00 3 4 1 19679.19 -0.07 1 0 0 3657.05 5 1 0 18392.77 0 2 1 6871.52 5 0 1 19781.1 0 3 0 4666.79 6 0 0 19781.32 0.02 1 0 1 7249.81 -0.08 4 2 1 19865.28 1 1 0 5234.97 6 1 0 21221.56 0.05 0 3 1 8373.85 2 2 3 20442.77 0 4 0 6134.01 7 0 0 22529.29 -0.06 1 1 1 8806.99 3 0 3 20543.12 1 2 0 6775.09 5 3 2 27502.66 -0.23 0 4 1 9833.58 -0.01 5 1 1 21221.82 2 0 0 7201.54 9 0 0 27540.69 0.15 1 2 1 10328.72 4 3 1 21314.44 0.03 0 0 2 7445.04 6 1 2 27574.91 2 0 1 10613.36 6 0 1 22529.43 0 5 0 7542.43 9 1 0 28934.14 0.83 0 0 3 11032.4 7 0 1 25120.27 1 3 0 8273.97 10 0 0 29810.85 0.42 1 3 1 11813.2 9 0 1 29810.87 0.43 2 1 0 8761.58 10 1 0 31071.57 -0.03 2 1 1 12151.25 11 0 1 33835.22 0.16 0 6 0 8869.95 -0.16 8 0 2 31207.09 -1.72 0 1 3 12565 9 0 3 35509.68 -8.18 0 1 2 9000.14 11 0 0 31909.68 0.67 2 2 1 13652.65 12 0 1 35586.01 -0.56 2 2 0 10284.36 11 1 0 33144.71 3 0 1 13830.93 12 1 1 36684.88 -2.05 0 2 2 10521.76 12 0 0 33835.25 0.19 0 7 1 13835.37 9 1 3 36739.78 -2.31 3 0 0 10599.68 13 0 0 35585.96 0.41 0 2 3 14066.19 13 0 1 37122.72 0.56 1 0 2 10868.87 12 2 0 36179.32 -5.56 1 0 3 14318.81 11 3 1 37309.85 0.22 2 3 0 11767.38 13 1 0 36684.05 -2.84 1 5 1 14647.97 13 1 1 38153.31 0 3 2 12007.77 10 1 2 36740.6 0.54 2 3 1 15119.03 14 0 1 38462.54 1.11 3 1 0 12139.31 14 0 0 37122.7 0.52 3 1 1 15347.95 14 1 1 39390.22 1.22 1 1 2 12407.66 12 3 0 37311.28 -0.59 0 3 3 15534.7 15 0 1 39574.54 0.25 4 0 0 13828.27 13 2 0 37765.65 1 1 3 15832.78 14 2 1 40226.31 -4.14 1 2 2 13910.89 14 1 0 38153.25 2 4 1 16546.31 15 1 1 40370.83 -0.72 2 0 2 14221.15 15 0 0 38462.52 1.10 3 2 1 16821.63 16 0 1 40437.26 1.99 0 0 4 14537.5 14 2 0 39123.77 0.24 4 0 1 16898.84 17 0 1 40949.31 3.88 3 3 0 15108.23 0.11 15 1 0 39390.26 1.26 1 2 3 17312.55 4 1 0 15344.5 16 0 0 39574.55 2 0 3 17495.52 2 1 2 15742.8 16 1 0 40370.55 -0.92 3 3 1 18265.82 4 2 0 16823.31 17 0 0 40437.23 2.09 4 1 1 18393.31 2 2 2 17227.37 18 0 0 40947.49 -8.59 1 3 3 18758.63

BT2 (water) – 0.5 Billion lines H216O POKAZATEL BT2 (water) – 0.5 Billion lines POKAZATEL – 10 billion lines, first complete Linelist of polyatomic molecule, every transition Between every bouind state is included POKAZATEL – PolyanskyOleg,Kyuberis Aleksandra, Zobov nikolAi, Tennyson, Lodi,(and Yurchenko)

H216O, J=0-72, T=296K, Pokazatel, 13000-25000cm-1 H216O, J=0-50, T=296K, BT2, 13000-25000cm-1

Structure of the talk Why we did what we did What we did for NH3 How we have done it

Low lying energy levels of NH3

Recently assigned NH3 band origins Band obs. BYTe ab initio (v1 + v2 + 2v42)+ 7572.9549 2.3 2.5 (v1 + v2 + 2v42)- 7603.1713 2.9 3.5 (v1 + v2 + v31)+ 7656.8700 0.6 -2.0 (v2 + 2v32)+ 7854.3892 2.9 -1.8 (v2 + 2v32)- 7864.0831 2.4 -1.7 (2v1 + v41)+ 8086.5926 1.2 -6.0 (v1 + v31 + v41)+ 8174.7017 -1.8 -2.4 (v1 + v31 + v41)- 8177.4358 -0.6 -1.4 (v1 + 3v41)+ 8253.7494 2.3 1.4 (v1 + 3v41)- 8257.5341 2.2 4.3 (v1 + 2v2 + 2v42)+ 8266.3284 1.4 1.5 (2v32 + v41)+ 8463.2901 2.4 4.4 (2v32 + v41)- 8463.8719 2.2 4.9 E. Burton et al., JMS, v.325, p.7 (2016)  

Highly excited experimental energy levels - calculations v1 v2 v3 v4L3L4 Obs (cm-1) Calc (cm-1) Obs-Calc (cm-1) 1 0 0 2 0 0 6520 6521.21 0.79 2 0 0 0 0 0 6606 6606.14 -0.14 1 0 1 4 0 0 9738.839 9741.40 -2.56 2 0 1 0 1 0 9689.722 9692.62 -2.89 1 0 0 6 0 2 12628.20 12627.56 0.64 3 0 1 0 1 0 12675.50 12676.39 -0.89 5 0 0 0 0 0 15450.82 15458.98 -8.16 4 0 1 0 1 0 15451.19 15458.11 -6.92 6 0 0 0 0 0 18107.56 18122.74 -15.18 5 0 1 0 1 0 18109.47 18119.42 -9.95 Lehmann, K et al. exp. NH3

Prediction and reality for vOH=10 (10,0+, 0)

K. Lehmann et al.- exp.

Figure 2 Spectrum of transitions to the states below D0 Figure 2 Spectrum of transitions to the states below D0. Transitions from the gateway state prepared via the pathway: [25154.61 cm1, 110 (80)+0]  [13864.28 cm1, 111 (40)-0]  [79.496 cm1, 212 (00) 0]. The combination of laser polarisation used and selection rules results in final states with J = 1 or 2. State labels are as in Fig. 1

Structure of the talk Why we did what we did What we did How we have done it

12 FACTORS 1. MRCI , MOLPRO ~Full CI Born-Oppenheimer 1. MRCI , MOLPRO ~Full CI 2. Number of points 200 -2000 3-5 cm-1 3. All electrons, CV 10 cm-1 4. Highest basis set aug-cc-pCV6z 5 cm-1 5. CBS 5 cm-1 6. Optimized (higher) CAS 10 cm-1 Corrections 7. Adiabatic (DBOC) 3 cm-1 8.Relativistic (MVD1, Gaunt (Breit), ) 10 cm-1 9. QED 0.5 cm-1 10. SO 0.1 – 40 cm-1 11. Vibration non-adiabatic (D. Schwenke, P. Bunker) 5 cm-1 12. Rotational non-adiabatic (S.Sauer) 10 cm-1

TROVE Yurchenko S. N. , Thiel W., Jensen P. Theoretical ROVibrational Energies (TROVE): A robust numerical approach to the calculation of rovibrational energies for polyatomic molecules J MOL SPECTROSC , 245 (2) 126 – 140, (2007)

CONCLUSIONS Ab initio NH3 PES and DMS has been calculated Energy levels from 6000 cm-1 to 8000 cm-1 calculated more accurately than fitted PES Energy levels between 10 000cm-1 nd 20 000 cm-1 have been calculated ab initio Starting point for a global PES and Linelist