3-Dimensional Intermolecular Potential Energy Surface of Ar-SH(2Pi)

Slides:



Advertisements
Similar presentations
The Delicate Balance of Hydrogen Bond Forces in D-Threoninol 19 Di Zhang, Vanesa Vaquero Vara, Brian C. Dian and Timothy S. Zwier Zwier Research Group,
Advertisements

“Rotational Energy Transfer in o - / p -H 2 + HD” Renat A. Sultanov and Dennis Guster BCRL, St. Cloud State University St. Cloud, MN June 20, 2007 OSU.
Fourier transform microwave spectrum of isobutyl mercaptan Kanagawa Institute of Technology 1 and The Graduate University for Advanced Studies 2 Yugo Tanaka,
Quantum translation-rotation dynamics of hydrogen molecules confined in the cages of clathrate hydrates Zlatko Bacic High-dimensional quantum dynamics.
1 Molecular Hamiltonians and Molecular Spectroscopy.
The spectral method: time-dependent quantum dynamics of FHF - : Potential Energy Surface, Vibrational Eigenfunctions and Infrared Spectrum. Guillermo Pérez.
Theoretical work on the water monomer and dimer Matt Barber Jonathan Tennyson University College London September 2009.
Rotational Spectra of Methylene Cyclobutane and Argon-Methylene Cyclobutane Wei Lin, Jovan Gayle Wallace Pringle, Stewart E. Novick Department of Chemistry.
Ab Initio Calculations of the Ground Electronic States of the C 3 Ar and C 3 Ne Complexes Yi-Ren Chen, Yi-Jen Wang, and Yen-Chu Hsu Institute of Atomic.
A new theoretical insight into the spectroscopic properties of polonium and astatine atoms Pascal Quinet Spectroscopie Atomique et Physique des Atomes.
Microwave Spectrum of Hydrogen Bonded Hexafluoroisopropanol  water Complex Abhishek Shahi Prof. E. Arunan Group Department of Inorganic and Physical.
The effective Hamiltonian for the ground state of 207 Pb 19 F and the fine structure spectrum Trevor J. Sears Brookhaven National Laboratory and Stony.
Probing the Dependence of the H 2 /D 2 + ICl/I 2 Entrance Channel Interactions on Intermolecular Orientation Joshua P. Darr, Andrew C. Crowther, and Richard.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
SILYL FLUORIDE: LAMB-DIP SPECTRA and EQUILIBRIUM STRUCTURE Cristina PUZZARINI and Gabriele CAZZOLI Dipartimento di Chimica “G. Ciamician”, Università di.
Rotational spectroscopy of oxygen bearing radicals and radical complexes Yasuki Endo 2006/June/19 The University of Tokyo.
61st OSU International Symposium on Molecular Spectroscopy RI12 Rotational spectrum, electric dipole moment and structure of salicyl aldehyde Zbigniew.
Equilibrium Molecular Structure and Spectroscopic Parameters of Methyl Carbamate J. Demaison, A. G. Császár, V. Szalay, I. Kleiner, H. Møllendal.
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
Int. Symp. Molecular Spectroscopy Ohio State Univ., 2005 The Ground State Four Dimensional Morphed Potentials of HBr and HI Dimers Collaborator: J. W.
Ab Initio and Experimental Studies of the E Internal Rotor State of He-CH 3 F Kelly J. Higgins, Zhenhong Yu, and William Klemperer, Department of Chemistry.
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
Millimeter-Wave Spectroscopy of the vdW Bands of He- HCN the Dissociation Limit. Millimeter-Wave Spectroscopy of the vdW Bands of He- HCN Above the Dissociation.
Rotational Spectra Of Cyclopropylmethyl Germane And Cyclopropylmethyl Silane: Dipole Moment And Barrier To Methyl Group Rotation Rebecca A. Peebles, Sean.
Optical Stark Spectroscopy and Hyperfine study of Gold Chrolride (AuCl) Ruohan Zhang and Timothy C. Steimle International Symposium on Molecular Spectroscopy.
0 ipc kiel The rotational spectrum of the pyrrole-ammonia complex Heinrich Mäder, Christian Rensing and Friedrich Temps Institut für Physikalische Chemie.
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
Rotational Spectroscopic Investigations Of CH 4 ---H 2 S Complex Aiswarya Lakshmi P. and E. Arunan Inorganic and Physical Chemistry Indian Institute of.
Microwave Spectroscopy and Internal Dynamics of the Ne-NO 2 Van der Waals Complex Brian J. Howard, George Economides and Lee Dyer Department of Chemistry,
The Rotational Spectrum of the Water–Hydroperoxy Radical (H 2 O–HO 2 ) Complex Kohsuke Suma, Yoshihiro Sumiyoshi, and Yasuki Endo Department of Basic Science,
Microwave Spectroscopic Investigations of the Xe-H 2 O and Xe-(H 2 O) 2 van der Waals Complexes Qing Wen and Wolfgang Jäger Department of Chemistry, University.
Rotational transitions in the and vibrational states of cis-HCOOH 7 9 Oleg I. Baskakov Department of Quantum Radiophysics, Kharkov National University.
Spectroscopic and Ab Initio Studies of the Open-Shell Xe-O 2 van der Waals Complex Qing Wen and Wolfgang Jäger Department of Chemistry, University of Alberta,
The 61 th International Symposium on Molecular Spectroscopy. ‘06 Funded by: NSF- Exp. Phys. Chem Mag. Hyperfine Interaction in 171 YbF and 173 YbF Timothy.
Rotational Spectra of N 2 O-H 2 Complexes University of Alberta Jen Nicole Landry and Wolfgang Jäger June 23, 2005.
Fourier-transform microwave spectroscopy of the CCCCl radical Takashi Yoshikawa, Yoshihiro Sumiyoshi, and Yasuki Endo Graduate School of Arts and Sciences,
LASER INDUCED FLUORESCENCE SPECTROSCOPY OF THE SiNSi RADICAL II: IDENTIFICATIONS OF THE A2A1, B2B1, AND D2Sg+ STATES C. MOTOYOSHI, Y. SUMIYOSHI, Y. ENDO.
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
Molecular Bonding Molecular Schrödinger equation
Juliane Heitkämper, John C Mullaney, Nick Walker
CAVITY AND CHIRPED PULSE ROTATIONAL SPECTRUM OF THE LASER ABLATION SYNTHESIZED, OPEN-SHELL MOLECULE TIN MONOCHLORIDE, SnCl G. S. GRUBBS II, DANIEL J. FROHMAN,
The Pure Rotational Spectrum of KO
72nd International Symposium on Molecular Spectroscopy (ISMS 2017)
A New Line List for A2Σ+-X2П Electronic Transition of OH
1Kanagawa Institute of Technology 3Georgia Southern University
Carlos Cabezas and Yasuki Endo
International Symposium on Molecular Spectroscopy
Ab initio calculation on He3+ of interest for semiempirical modelling of Hen+ Ivana Paidarová a), Rudolf Polák a), František Karlický b), Daniel Hrivňák.
Automated construction of Potential Energy
Hiroyuki Ozeki, Rio Miyahara, Hiroto Ihara, Satoshi Todaka,
SIMULATIONS OF VIBRONIC LEVELS IN DEGENERATE ELECTRONIC STATES IN THE PRESENCE OF JAHN-TELLER COUPLING – EXPANSION OF PES THROUGH THIRD ORDER VADIM L.
Variation of CH Stretch Frequencies with CH4 Orientation in the CH4--F- Complex: Multiple Resonances as Vibrational Conical Intersections Bishnu P Thapaliya,
Quantum Dynamics Studies of the Vibrational States of HO3(X2A”)
FT Microwave and MMW Spectroscopy of the H2-DCN Molecular Complex
The Three-dimensional Potential Energy
MOLECULAR BEAM OPTICAL ZEEMAN SPECTROSCOPY OF VANADIUM MONOXIDE, VO
THE STRUCTURE OF PHENYLGLYCINOL
Fourier transform microwave spectra of n-butanol and isobutanol
Stéphane Bailleux Nitrosyl iodide, INO: millimeter-wave spectroscopy guided by ab initio quantum chemical computation.
The Pure Rotational Spectrum of FeO+ (X6S+)
The rotational spectrum of the urea isocyanic acid complex
BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,
Michal M. Serafin, Sean A. Peebles
Vibrational Predissociation of the Methanol Dimer
Wafaa Fawzy Murray State University (MSU)
Michael A. Flory Shawn K. McLamarrah Lucy M. Ziurys
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
COMPREHENSIVE ANALYSIS OF INTERSTELLAR
Sara E. Ray and Anne B. McCoy
DeWayne T. Halfen and Lucy M. Ziurys Department of Chemistry
Presentation transcript:

3-Dimensional Intermolecular Potential Energy Surface of Ar-SH(2Pi) Y. Sumiyoshi and Y. Endo The Univ. of Tokyo

Introduction I High-resolution spectroscopy of radical-complexes Rg-OH, Rg-SH, Ar-HO2, H2O-OH Pure rotational transitions of ArSH and ArSD in the ground state by FTMW spectroscopy Two-dimensional PES of Ar-SH 1. JCP, 113, 10121, 2000 2. JMS, 222, 22, 2003

Introduction II Procedure 1. A PES by ab initio at RCCSD(T)/aVTZ+332 2. Solve the 2D Schrödinger equation on the PES Optimize the 2D PES to reproduce the FTMW data of Ar-SH & Ar-SD Effective correction term for R : R + dR for Ar-SD dR = -0.034 Å

How to investigate the PES A state Energy level structures defined by P Ar Ar-OH J 20 P P Energy / cm-1 S H w Ar-SH 10 -1/2 SEP spectroscopy -3/2 ~10 cm-1 (300 GHz) 1/2 Berry et al. J.Chem.Phys. 96, 7890 (1992) P = 3/2 ~3 cm-1 (90 GHz) Millimeter wave

Energy level structures P = 3/2 3/2 5/2 J =7/2 e f Case a Ar H S ArSH ArSD 5 e Ar N = 5 e f N = 5 e f 4 4 f P = 1/2 H S e 4 e f 3 Case b f e 2 e 3 f f e 1 e 3 2 e f f e 1 Energy / cm-1 e f B = 1724.4 MHz g = 792 MHz B = 1719.3 MHz g = 2109 MHz 2 1

Hamiltonian ~3D analysis ~ Coupling scheme j n = r + l, j = n + s, J = j + L, F = J + I L Ar J r P S H w Total Hamiltonian j + q = r - re

Potential terms ~3D analysis ~ 1. Average potential : ½(VA’+VA”) Expanded by Legendre functions

Potential terms ~3D analysis ~ 2. Difference potential : ½(VA’ -VA”) 3. Coordinate transformation H / D q’ R’ d rC Ar R q S

Basis functions ~3D analysis ~ Total function: 1. Rotation Couple the nuclear spin, I 2. Vibration Intermolecular : Monomer vibration : Gauss-Hermite functions vmax = 17, jmax = 7.5, vs max = 9 Hmax : 48678 X 48678 207 sec. by P4-3.2 GHz

Ab initio calculation ~3D analysis ~ An initial 3-D potential by ab initio calculations RCCSD(T) / aug-cc-pVTZ with bond functions (3sp, 2df, 1g) Total of 1806 points for A’ and A” R : 3.3 ~ 8.0 Å r : 1.21 ~ 1.51 Å q : 0 ~ 180 ° by Molpro 2002

115 lines with parity doublings & Data set to be fitted 115 lines with parity doublings & hyperfine components Pure rotational transitions : P = 3/2 ← 3/2, J” = 1.5 - 7.5, 25 lines FTMW Ar-SH Transitions of D P = 1 : P = 1/2 ← 3/2, N” = 0 - 4, 31 lines weighted by 0.01 Double Resonance Pure rotational transitions : P = 3/2 ← 3/2, J” = 1.5 - 7.5, 36 lines FTMW Ar-SD Transitions of D P = 1 : P = 1/2 ← 3/2, N” = 1 - 4, 23 lines weighted by 0.01 Double Resonance

Least-squares analysis Ar-SH Ar-SD FTMW 0.2 0.1 0.0 O-C / MHz -0.1 -0.2 J’ = 5/2 9/2 13/2 17/2 J’ = 5/2 9/2 13/2 17/2 mmW 0.2 0.1 O-C / MHz 0.0 -0.1 -0.2 J’ = 1/2 3/2 5/2 7/2 9/2 J’ = 1/2 3/2 5/2 7/2 s = 9.9 kHz Without effective correction terms !

The Average potential q0 q1 q2 Fitted Ab initio Fitted Ab initio / cm-1 - 7.380 (61) 14.856 (21) -12.511 (15) 117.9214 7.4556 14.0354 -12.8798 -1.6877 0.1351 2.0208 - -5.81 (47) 20.1060 -15.8818 -5.4035 -18.0012 4.3049 8.3933 6.9223 30.5485 e1 e2 e3 e4 e5 e6 Rm0 / Å 3.96730 (27) 0.08983 (13) 0.03480 (31) 0.14691 (32) - 3.9955 0.0886 0.0323 0.1516 0.0370 -0.0041 -0.0110 0.0176 (81) 0.4884 (94) - 0.1144 0.3642 0.3085 0.2088 0.0142 -0.0464 -0.0290 0.1020 0.1578 Rm1 Rm2 Rm3 Rm4 Rm5 Rm6 m0 13.111 (38) - 12.9371 0.6523 1.3638 1.3152 0.3654 -0.2572 -0.2065 - -0.7377 1.0350 m1 m2 m3 m4 m5 m6 g - 14.2594 - 2.967658

The Difference potential q0 q1 Fitted Ab initio Ab initio V22 / cm-1 / Å / Å6 -68.888(52) -3.415 (89) -4.85 (50) - 0.357 (24) -74.581 -3.0392 -5.0343 -0.7611 0.1129 2.9041 -146205.499 -3.8308 5.2550 -2.4627 0.2248 -0.1386 V23 V24 V25 a b k The Potential of SH a) Ab initio 16 parameters s = 9.9 kHz / Å-2cm-1 209624.021 / Å-3cm-1 -1119853.149 / Å-4cm-1 4980100.247 / Å-5cm-1 -13683020.268 / Å 1.346282 k2 k3 k4 k5 re a) Fixed to the ab initio values

PESs of ArSH : Average & Difference potentials 5.5 -50 (VA’ + VA’’)/2 : VP (R, q = 0, q ) -70 4.5 R / ang. -90 -110 -110 -130 3.5 5.5 R / ang. (VA’ - VA’’)/2 : V2(R, q = 0, q ) 4.5 -20 -40 -300 3.5 60 120 180 q / deg.

Comparison of potentials Minimum energy path at re Ab initio fitted 4.2 R / ang. 4.0 Ar-OH -3/2 -1/2 Ar-SH 3.8 -85 -95 Ar-SH -105 -1/2 E / cm-1 -115 -3/2 -125 1/2 P = 3/2 -135 -145 60 q / deg. 120 180

q-Dependence of the PES R Ar R Ar H S q = -0.1 0.0 0.1 H S q = 0 q = 60 -40 E / cm-1 -80 -120 3.5 4.5 5.5 3.5 4.5 5.5 R / ang. R / ang.

Summary Energy level structure of the P = 1/2 state has been characterized: (i) Hund’s case (b), (ii) Significantly different between Ar-SH and Ar-SD. All data of Ar-SH and Ar-SD have been reproduced without the effective correction terms 3. The 3D-PES of Ar-SH has been determined. Future 1. Observation of the P = –1/2 and –3/2 states of Ar-SH 2. Rg-SH, Rg-OH

q = 0 q = -0.1 0.0 0.1 Ar-SH Ar-OH -40 -60 E / cm-1 -100 -80 -120 -140 3.5 4.5 5.5 3.0 4.0 5.0 R / ang. R / ang.

Dipole moment SH OH Exp. m / Debye Exp. R / ang. R / ang. 0.80 1.70 0.76 1.66 m / Debye Exp. 0.72 1.62 1.26 1.36 1.46 0.90 1.00 1.10 R / ang. R / ang. RCCSD(T)/av5z