HDAC analysis: Hydrogen in Titan‘s exosphere

Slides:



Advertisements
Similar presentations
Eyk Bösche et al. BBC2 Workshop, Oktober 2004: Eyk Bösche et al. BBC2 Workshop, Oktober 2004: Simulation of skylight polarization with the DAK model and.
Advertisements

Plasma-induced Sputtering & Heating of Titan’s Atmosphere R. E. Johnson & O.J. Tucker Goal Understand role of the plasma in the evolution of Titan’s atmosphere.
PRECIPITATION OF HIGH-ENERGY PROTONS AND HYDROGEN ATOMS INTO THE UPPER ATMOSPHERES OF MARS AND VENUS Valery I. Shematovich Institute of Astronomy, Russian.
Revised tholin profile for the atmosphere of Titan Mao-Chang Liang 1, J. A. Kammer, X. Zhang 3, D. Shemansky 4, Y. L. Yung 2 1 Research Center for Environmental.
X-Ray Spectroscopy Workshop Cambridge, MA Matthew Carpenter, UCB SSL 7/11/2007, Comparison of Observed and Theoretical Fe L Emission from CIE Plasmas Matthew.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft NDACC H2O workshop, Bern, July 2006 Water vapour profiles by ground-based FTIR Spectroscopy:
Microphysics of the radiative transfer. Numerical integration of RT in a simplest case Local Thermodynamical Equilibrium (LTE, all microprocesses are.
Titan’s Thermospheric Response to Various Plasma Environments Joseph H. Westlake Doctoral Candidate The University of Texas at San Antonio Southwest Research.
1 Particle-In-Cell Monte Carlo simulations of a radiation driven plasma Marc van der Velden, Wouter Brok, Vadim Banine, Joost van der Mullen, Gerrit Kroesen.
HiRes Usage. Outline ● Shower energy ( Size, dE/dx ) ● Atmospheric profile ( stdz76, radiosonde) ● Rayleigh Scattering ● Aerosols Model ( density, variability.
Dynamical modeling of the DI dust ejecta cloud Tanyu Bonev (Institute of Astronomy and National Astronomical Observatory, Bulgaria) and the ESO DI observing.
Ch. 5 - Basic Definitions Specific intensity/mean intensity Flux
621 project Spring project 1. The heating rate is defined as :- Let us assume that the effect of scattering is small, and that in the ultraviolet.
Lecture 12 Monte Carlo Simulations Useful web sites:
Figure 1 Figure 8 Figure 9Figure 10 Altitude resolved mid-IR transmission of H 2 O, CH 4 and CO 2 at Mauna Loa Anika Guha Atmospheric Chemistry Division,
Monte Carlo Atmosphere Model Dana Crider, CUA Rosemary Killen, U. Md.
ESPACE Porto, June 2009 MODELLING OF EARTH’S RADIATION FOR GPS SATELLITE ORBITS Carlos Javier Rodriguez Solano Technische Universität München
Stellar Atmospheres II
Technische Universität München Laboratory Experiments using Low Energy Electron Beams with some Emphasis on Water Vapor Quenching A. Ulrich, T. Heindl,
LYRA occultations Meeting 2011/05/05. LYRA: Occultations Lyman α Herzberg Aluminum Zirconium EUVUV Vis (IR ?) Lyman α: very sensitive to Visible and InfraRed.
Terrestrial atmospheres. Overview Most of the planets, and three large moons (Io, Titan and Triton), have atmospheres Mars Very thin Mostly CO 2 Some.
Mercury’s Seasonal Na Exosphere Data from MESSENGER’s MASCS UVVS instrument Tim Cassidy, Aimee Merkel, Bill McClintock, Matt Burger Menelaos Sarantos,
Marc Schröder, FUB Tutorial, De Bilt, 10.´04 Photon path length distributions and detailed microphysical parameterisations Marc Schröder Institut für Weltraumwissenschaften,
1 The Organic Aerosols of Titan’s Atmosphere Christophe Sotin, Patricia M. Beauchamp and Wayne Zimmerman Jet Propulsion Laboratory, California Institute.
Optical properties Satellite observation ? T,H 2 O… From dust microphysical properties to dust hyperspectral infrared remote sensing Clémence Pierangelo.
Chapter 8 – Continuous Absorption Physical Processes Definitions Sources of Opacity –Hydrogen bf and ff –H - –He –Scattering.
INMS quarterly report: Aug.-Sept., 2005 Science highlights –In situ determination of the atmosphere of Enceladus much beyond anticipation - water 90%,
Österreichische Akademie der Wissenschaften (ÖAW) / Institut für Weltraumforschung (IWF), Graz, Austria, iwf.oeaw.ac.atDownload:2014.
Numerical simulations of optical properties of nonspherical dust aerosols using the T-matrix method Hyung-Jin Choi School.
COMPARATIVE TEMPERATURE RETRIEVALS BASED ON VIRTIS/VEX AND PMV/VENERA-15 RADIATION MEASUREMENTS OVER THE NORTHERN HEMISPHERE OF VENUS R. Haus (1), G. Arnold.
Evaluation of the Cu atomic density during sputter deposition process with optical emission spectroscopy Takeo Nakano, Kouji Tanaka and Shigeru Baba Dept.
Aerosol distribution and physical properties in the Titan atmosphere D. E. Shemansky 1, X. Zhang 2, M-C. Liang 3, and Y. L. Yung 2 1 SET/PSSD, California,
Studying the Venus terminator thermal structure observed by SOIR/VEx with a 1D radiative transfer model A. Mahieux 1,2,3, J. T. Erwin 3, S. Chamberlain.
1 Improving SO 2 AMFs: Comparison of different approaches P. Hedelt, P. Valks, D. Loyola Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) Institut.
Ch2 Bohr’s atomic model Four puzzles –Blackbody radiation –The photoelectric effect –Compton effect –Atomic spectra Balmer formula Bohr’s model Frank-Hertz.
INMS quarterly report: May-July, 2005 Science highlights –In situ determination of the ionospheric composition of Titan … the hydrocarbon and nitrile complexity.
Nitrogen Chemistry in Titan’s Upper Atmosphere J. A. Kammer †, D. E. Shemansky ‡, X. Zhang †, and Y. L. Yung † † California Institute of Technology, Pasadena,
Figure 1 Figure 8 Figure 9Figure 10 Altitude resolved mid-IR transmission of H 2 O, CH 4 and CO 2 at Mauna Loa Anika Guha Atmospheric Chemistry Division,
Rev 131 Enceladus’ Plume Solar Occultation LW Esposito and UVIS Team 14 June 2010.
Micro-structural size properties of Saturn’s rings determined from ultraviolet measurements made by the Cassini Ultraviolet Imaging Spectrograph Todd Bradley.
Titan Glows in the Dark – West et al. and Ajello et al., 2012 R. A.. West, J. M. Ajello, M. H. Stevens, D. F. Strobel, G. R. Gladstone, J. S. Evans, and.
Titan Airglow Spectra From 2004 and 2008 and Laboratory Results for UVIS, ISS and VIMS (800-11,000 Å) JOSEPH AJELLO JPL JACQUES GUSTIN MICHAEL STEVENS.
Cassini UVIS Results on the Enceladus Plume and Spacecraft Safety Larry W. Esposito 5 June 2007 Athens PSG.
Terrestrial atmospheres. Review: Physical Structure Use the equation of hydrostatic equilibrium to determine how the pressure and density change with.
D. E. Shemansky† , J. A. Kammer ‡ , X. Zhang ‡ & Y. L. Yung‡
Chapter 8 – Continuous Absorption
Analysis of Density Waves in UVIS Ring Stellar Occultations
Progress Toward Measurements of Suprathermal Proton Seed Particle Populations J. Raymond, J. Kohl, A. Panasyuk, L. Gardner, and S. Cranmer Harvard-Smithsonian.
Latest Results of HDAC analysis
Spectral appearance of terrestrial exoplanets
Titan tholin properties from occultation and emission observations
UVIS Team – Meeting H. Uwe Keller, Yuri Skorov, Ralf Reulke.
HDAC status and analysis: Photometric observations by HDAC onboard Cassini Yuri Skorov, Horst Uwe Keller, Ralf Reulke, Karl-Heinz Glassmeier, Vlad.
Photometric observations by HDAC onboard Cassini: sensitivity and first comparison with models Yuri Skorov, Horst Uwe Keller, Ralf Reulke, Karl-Heinz.
Study of 20 January 2005 solar flare area by certain gamma-ray lines
Titan Nitrogen Emissions
Enceladus Plume Simulations
Final results of HDAC analysis
Monitoring Saturn's Upper Atmosphere Density Variations Using
Saturn temperature and H2 profiles from Solar EUV occultations
Atmospheric Basics.
Infrared emission from dust and gas in galaxies
Cassini UVIS solar occultation
HDAC Report R. Reulke and H. U. Keller UVIS Team – Meeting Boulder, 23
Dione’s O2 Exosphere C. J. Hansen January 2013.
Revised tholin profile for the atmosphere of Titan
Model Calculations of the Ionosphere of Titan during Eclipse Conditions Karin Ågren IRF-U, LTU.
Titan Airglow FUV Limb Spectra From Cassini UVIS Observations
UVIS Titan T0, TA Analysis
Equation of Transfer (Hubeny & Mihalas Chapter 11)
Presentation transcript:

HDAC analysis: Hydrogen in Titan‘s exosphere Pascal Hedelt(1), Yuichi Ito(2), Heike Rauer(1,3), Ralf Reulke(4), H. U. Keller(2), H. Lammer(5), P. Wurz(6), L. Esposito(7) Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt (DLR) Max Planck Institut für Sonnensystemforschung (MPS) Zentrum für Astronomie und Astrophysik, Technische Universität Berlin (TUB) Institut für Verkehrsforschung, Deutsches Zentrum für Luft- und Raumfahrt (DLR) Institut für Weltraumforschung, Österreichische Akademie der Wissenschaften Abteilung für Weltraumforschung und Planetologie, Universität Bern Laboratory for Atmospheric and Space Physics, University of Colorado

Aims & Scope Using HDAC data gathered during T9, the distribution of atomic hydrogen in Titans exosphere is investigated: Calculate exospheric emission of resonantly scattered Hydrogen Ly-Alpha from Titan Simulate HDAC measurement during the Cassini/Titan T9 encounter Little is known about Titan‘s hydrogen exosphere Vary input parameters Determine exospheric parameters UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt

Overview of this talk 3D Monte Carlo Model Data Sampling Model HDAC observations Parameter variations & comparison with HDAC Data Hydrogen distribution Exosphere temperature Cell temperature Conclusions UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt

Monte Carlo Model Investigate scattering of solar Lyα radiation on H atoms in Titan’s exosphere 3D model Scattering medium: H; absorbing medium: CH4 Altitude range considered: 700 – 30,000km Resonance scattering (isotropic): Redistribution function from Henyey 1940 Considers Maxwellian motion of H atoms Follow 2,500,000 photons within one quarter of the model sphere until they leave at upper/lower boundary or are absorbed; then mirror to get the whole sphere UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt

Input Data: H & CH4 profiles Methane profile 700 – 2,000 km: INMS TA, TB, T5 data (De la Haye,et al. 2007) 2,000km – 30,000 km: Particle MC model (Lammer & Wurz, 2003) Hydrogen profile 700 – 1,500 km: Rough fit to Yung ‘84 model 1,500 – 30,000 km Particle MC model (Lammer & Wurz, 2003) Methane Hydrogen Lammer Model Chamberlain model: Bound rbits included Bound orbits excluded Lammer MC model Lammer model Chamberlain model Exobase Yung model INMS data UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt

Lammer MC Model At exobase: 3D Maxwellian velocity distribution 3D random angle distribution 2D calculation of trajectories 1D density distribution Photoionization is included but unimportant at Titan Radiative pressure forcing not included

Monte Carlo Model: Output Output: scattering positions, direction before/after scattering, wavelength Sun UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt

Data Sampling Model Uses output from MonteCarlo model For every Cassini position during T9: Calculates opt. depth to each scattering point in FOV  probability for photon to reach detector Sum up all photons within FOV within discrete wavelength bins Incorporate FOV sensitivity Multiply with cell absorption function Integrate over wavelength Absorption function at beginning of flyby Absorption function at end of flyby UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt

Data Sampling Model: How it works UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt

HDAC observations Cassini closest approach UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt

Comparison with HDAC Data Compare model & measurement: Take difference: CELL OFF - H CELL ON Do the same for simulated data… UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt

Parameter Variations Vary exospheric temperature: T = 149 – 157.4K (De la Haye, et al. 2007) Vary exosphere hydrogen number density: At Exobase: nH = 4.2x103 cm-3 (Yung, 1984) nH = 1.0x104 cm-3 (Broadfoot, et al. 1981) Vary exospheric distribution of H Lammer MC model / Chamberlain model Vary cell temperature UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt

Best parameter set (so far…) Input: TExo = 150K, Tcell=300K, H/CH4: Lammer, nH,Exobase= 4.0E4 cm-3 UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt

I. Exospheric temperature Input: Tcell=300K, H/CH4: Lammer, nH,Exobase= 4.0E4 cm-3 UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt

II. Hydrogen density Input: TExo = 150K, Tcell=300K, H/CH4: Lammer - Replace by newer plot!!! - UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt

III. Hydrogen profile Fixed density Input: TExo = 150K, Tcell=300K, nH,Exobase= 1.0E4 cm-3 Replace by newer plot!!! Replace by newer plot!!! UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt

III. Hydrogen profile Variable densities Input: TExo = 150K, Tcell=300K - - UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt

VI. Cell temperature Input: TExo = 150K, H/CH4: Lammer, nH,Exobase= 4.0E4 cm-3 Replace by newer plot!!! Replace by newer plot!!! UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt

Summary & Conclusion Principal agreement between model and data (work in progress) Exospheric temperature has no visible influence Hydrogen density profile has strong impact  Lammer model more realistic Hydrogen density at exobase has strong impact  Best fitting value close to nH,Exobase= 4.0E4 cm-3 Celltemperature has only little impact Using HDAC data we are able to determine the hydrogen density & distribution in Titan’s exosphere!!! nH = 4.2x103 cm-3 (Yung, 1984) nH = 1.0x104 cm-3 (Broadfoot, et al. 1981) UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt

Outlook Find best fitting parameter sets Use HDAC again during another flyby! Publish… UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt

Thanks for your attention! UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt