A B Fig. 1C Fig. 2A (G007-LK) Tanaka et al. Supplementary Figure S1 -

Slides:



Advertisements
Similar presentations
Jungwirth et al. Suppl. Fig. 1 A B. Jungwirth et al. Suppl. Fig. 2 HCT-116  -actin Bim EL Bak Bax - + KP46 A A C KP46 (µM) hours.
Advertisements

Control siRNA BRG1 siRNA PTEN – Akt – p-Akt – p-GSK-3  – Cyclin D1 – BRG1 –  -actin – SW480 Supplemental data S1 Supplemental data S1. Effects of transduction.
Knight et al – Supplementary Table Supplemental Table 1: Cell line Densitometry AROSSIRT1 ARPE WI MCF10A HCT HCT116.
Antibody staining (Lecture 3, p.4). In situ hybridization (Lecture 4 p.4)
Wnt/β-catenin Signaling Pathway Prospective Target for Cancer Treatment Emelia E Conte 1, Jun Yin 2, Mei Zhang 2 Western Blot Introduction.
Supplementary Fig. 1. RT-PCR showed that tumor tissues have elevated Mst1 mRNA levels in most of the HCC patients tested. GAPDH RT-PCR products were shown.
Wu et al., Supplementary Fig 1 Supplementary Figure 1: The depletion of BRG1 in HeLa cells has no effect on cell proliferation. Sh- empty vector was used.
Supplementary Figure 1 Sensitive Resistant Cell Count Propidium Iodide
Figure S2 apoptosis-PARP -WB
Volume 1, Issue 2, Pages (March 2002)
expression surface markers
Supplementary Figure 1 A B catalase p53 catalase MW(kDa) PIG3 MW(kDa)
GLUT3 is a direct target of TCF4/β‐catenin
APC Moonlights to Prevent Wnt Signalosome Assembly
A B HT29 HCT15 Colo205 Ls174T LS180 Isotypic control
Volume 18, Issue 12, Pages (December 2016)
1A 1B Supplementary Figure 1. Parp HT29 C-Parp Gapdh LoVo
Involvement of SR Proteins in mRNA Surveillance
Days after cell inoculation Days after cell inoculation
Days after cell inoculation Days after cell inoculation
Supplementary Figure 1 Non-migrating cells Migrating cells
Supplementary Figure S1: FGFR4 silencing synergistically enhances the effects of chemotherapy in colon cancer cells. siFGFR4 FGFR4_6 FGFR4_2 Neg Con FGFR4.
Oncogenic ras induces gastrin gene expression in colon cancer
A B C AR-V7/AR-V7 ARv567es/ARv567es * * VC- AR-V7 ARv567es- VC BiFC
Dongwon Kim, Luis A. Garza  Journal of Investigative Dermatology 
Wenqi Wang, Nan Li, Xu Li, My Kim Tran, Xin Han, Junjie Chen 
A B Supplementary figure S5 ** ** ** ** ** **
Volume 13, Issue 6, Pages R215-R216 (March 2003)
Nuclear export of endogenous APC in different cell lines.
(A) Schematic representation of full‐length APC
Detailed analysis of post‐translational compensation of varying Erk concentration. Detailed analysis of post‐translational compensation of varying Erk.
mRNA level as % relative to
Figure S4 control-siRNA Day 0 fes A-siRNA Day 3 fer 1-siRNA
Relative amount of nuclear β-catenin
Bernard et al, Supplementary Figure S1
(apoptotic + necrotic)
Transient Expression of WNT2 Promotes Somatic Cell Reprogramming by Inducing β- Catenin Nuclear Accumulation  Mizuki Kimura, May Nakajima-Koyama, Joonseong.
Supplementary Fig. S1 BCL2 5’flanking ctrl siRNA luc
Figure 2 Increased mitochondrial sensitivity to glucose reduction in lymphoblastoid cells from patients with primary lateral sclerosis Increased mitochondrial.
Effect of Nf1 knockdown on Wnt pathway in MSC80 cells.
Volume 37, Issue 2, Pages (January 2010)
Hironori Hara et al. BTS 2018;3:
Re‐expression of the AXIN1 coding sequence re‐sensitizes VACO6R cells to PORCN inhibition Re‐expression of the AXIN1 coding sequence re‐sensitizes VACO6R.
Tyrosine phosphorylations of both DAB1 and ABL are essential for invasion of colorectal cancer cells. Tyrosine phosphorylations of both DAB1 and ABL are.
CRM1- and Ran-independent nuclear export of β-catenin
Volume 16, Issue 1, Pages (June 2016)
TC-1 silencing sensitized A549 and SPC-A-1 cells to radiation therapy
Fig. 3. Inactivation of the Wnt/β-catenin signaling pathway inhibited cell proliferation and induced apoptosis in A549 and SPC-A-1 cells. Inactivation.
Knocking down Wnt3 increases the cells' response to trastuzumab and reduces cells' invasiveness. Knocking down Wnt3 increases the cells' response to trastuzumab.
Wnt/β-catenin inhibition delays but does not inhibit T/Bra::GFP expression. Wnt/β-catenin inhibition delays but does not inhibit T/Bra::GFP expression.
P38 activation mediates chronic insulin-induced IRS1 and IRS2 degradation and is involved in myocardial insulin resistance in vitro. p38 activation mediates.
SYCE2 induces resistance to ionizing radiation and cisplatin in somatic cells. SYCE2 induces resistance to ionizing radiation and cisplatin in somatic.
Figure:
Volume 119, Issue 4, Pages (October 2000)
Volume 21, Issue 3, Pages (October 2017)
Volume 4, Issue 4, Pages (April 2009)
BCL-3 regulates expression of stemness-associated Wnt targets.
GPR124 is the receptor for WNT7B responsible for synergistic signaling
Variation in dUTPase expression in cell lines.
A B C D E F Supplementary Figure S1 Deng et al. MS1096
Competition between FLYWCH1/β-catenin and TCF4/β-catenin complexes for their interaction to Tcf-DNA-binding sites. Competition between FLYWCH1/β-catenin.
MiR-200c is a PI3K–AKT signaling pathway regulator in CRC
Activation of Wnt signaling pathway in trastuzumab-resistant cell lines. Activation of Wnt signaling pathway in trastuzumab-resistant cell lines. A, bar.
SSTC-104 and LRP6 depletion effects on β-catenin and synovial sarcoma cells. SSTC-104 and LRP6 depletion effects on β-catenin and synovial sarcoma cells.
Fig. 1 Multivalent proapoptotic DRAs can induce cell death in TRAIL-sensitive and TRAIL-resistant human CRC cell lines. Multivalent proapoptotic DRAs can.
Crizotinib-resistant NPM-ALK mutants retain sensitivity to ganetespib.
High nuclear β-catenin levels confer resistance to AKT inhibition and coordinates with increased nuclear FOXO3a to promote metastasis in colon cancer.
NF1-associated and sporadic MPNST cell lines show a decrease in cell viability, soft agar colony formation, and xenograft tumor growth when Wnt/β-catenin.
ΔNp63 induces β-catenin nuclear accumulation and signaling
Volume 11, Issue 8, Pages (May 2015)
Presentation transcript:

A B Fig. 1C Fig. 2A (G007-LK) Tanaka et al. Supplementary Figure S1 - COLO- 320DM NC CTNNB1 DLD-1 RKO 260K 160K 110K 80K 50K 40K 30K 20K 15K 10K HCT-116 SW403 HCT-15 HCC 2998 KM12 HT-29 GAPDH Active β-catenin Fig. 1C * A COLO- 320DM Phospho β-catenin 40K - + KM12 110K Axin1 160K Axin2 GAPDH G007-LK Active 80K 60K 30K 20K 50K HCT- 116 RKO - + COLO-320DM DLD-1 HCT-15 HCC2998 HT-29 Axin1 76K 38K 102K 150K 225K 24K 31K 52K 17K Active β-catenin 12K GAPDH Axin2 Fig. 2A (G007-LK) G007-LK B 76K 102K 150K 225K - + Phospho β-catenin G007-LK COLO-320DM + - 76K 102K 150K 225K DLD-1 HCT-15 HCC2998 HT-29 Phospho-β-catenin G007-LK SW403 Active β-catenin Phospho G007-LK Axin1 - Axin2 76K 102K 150K 225K 52K 38K 31K 24K 17K + GAPDH Tanaka et al. Supplementary Figure S1

C Axin1 Axin2 102K 76K 38K 31K GAPDH 150K 225K 52K - + HCT15 DLD1 KM12 HCT116 HT29 HCC2998 RKO SW403 IWR-1 COLO-320DM Fig. 2A (IWR-1) Phospho β-catenin 150K 102K 76K Active 52K 38K 31K 24K 17K - + HCT15 DLD1 KM12 HCT116 HT29 HCC2998 RKO SW403 IWR-1 COLO-320DM D Fig. 4A - + siAPC NC HCT-15 DLD-1 HCC2998 G007-LK 102K Axin2 150K 225K 76K APC 52K 38K 31K 24K GAPDH 102K 76K Active β-catenin 150K 225K 38K 31K 24K 17K - + siAPC NC HCT-15 DLD-1 HCC2998 G007-LK Tanaka et al. Supplementary Figure S1 (continued)

A D B C Tanaka et al. Supplementary Figure S2 COLO-320DM Tankyrase Active β-catenin Axin1 Axin2 GAPDH SW403 DLD-1 HCT-15 HCC2998 HT-29 KM12 HCT-116 RKO DLD-1 HCT-15 HCC2998 (High cell density) HT-29 KM12 SW403 Active β-catenin DAPI merge COLO-320DM (Low cell density) B 160K 110K 40K Tankyrase-1 GAPDH siNC siTNKS siTNKS2 COLO-320DM HT-29 Tankyrase-2 C TNKS TNKS2 Relative expression of TNKS Relative expression of TNKS2 NC siTNKS siTNKS2 COLO- 320DM HT-29 COLO- 320DM HT-29 Tanaka et al. Supplementary Figure S2

Cell number (% of control) A Cell number (% of control) TNKSi (μmol/L) G007-LK IWR-1 XAV939 SW480 B 225K 150K 102K 76K 38K 38 K 102 K 225 K 150 K - + NC siAPC APC Axin2 GAPDH Active β-catenin SW480 (20-AAR = 1) COLO-320DM (20-AAR = 0) HT-29 (20-AAR = 3) KM12 (20-AAR = 11) G007-LK Tanaka et al. Supplementary Figure S3

A B C D * ** * ** Tanaka et al. Supplementary Figure S4 - + siAPC#1 NC HCT-15 DLD-1 HCC2998 225K 150K 102K 76K 38K APC Active β-catenin Axin2 GAPDH IWR-1 B Relative expression of Axin2 HCC2998 - + NC siAPC#1 siAPC#3 HCT-15 DLD-1 IWR-1 * ** C - + NC siAPC#1 G007-LK * ** HCC2998 HCT-15 DLD-1 Cell number (% of control) D - + IWR-1 HCC2998 HCT-15 NC siAPC#1 siAPC#2 siAPC#3 DLD-1 Cell number (% of control) Tanaka et al. Supplementary Figure S4

Cell number (% of control) A B Endogenous APC APC811 Axin2 Active β-catenin GAPDH 225K 102K 38K - + siAPC HCC2998 IWR-1 1 2 3 4 5 6 7 8 lane # - + siAPC COLO-320DM APC811 IWR-1 102K 38K Axin2 Active β-catenin GAPDH 1 2 3 4 5 6 7 8 lane # C D 225K 102K 38K GAPDH APC811 Endogenous APC - + siAPC HCC2998 Cell number (% of control) G007-LK (μmol/L) IWR-1 (μmol/L) Mock, NC APC811, NC Mock, siAPC APC811, siAPC Tanaka et al. Supplementary Figure S5

TNKSi-sensitive cells TNKSi-resistant cells Axin2 Axin2-dependent degradation of β-catenin “Long” APC that contains two 20-AARs blocks Axin2-dependent degradation of β-catenin. TNKSi-sensitive cells TNKSi-resistant cells “Short” APC APC Repression of Wnt signaling activity Maintenance of High dependency on Wnt signaling Low dependency “Long” APC A C “Short” APC that lacks all 20-AARs has no effect on Axin2-dependent degradation of β-catenin. b-catenin Tankyrase PAR-dependent degradation of Axins TNKSi treatment Accumulation of Axins B Partially retained 20-AARs All seven 20-AARs lost Tanaka et al. Supplementary Figure S6

A B C * * Tanaka et al. Supplementary Figure S7 PDC APC mutation 20-AAR = 0 G007-LK IWR-1 JC-7 R232X ✓ intermediate JC-20 P1483fs sensitive JC-32 W553X JC-33 Q1303X resistant JC-35 I1164fs JC-36 R805X JC-37 T1556fs JC-39 R216X JC-47 F1491fs JC-49 R302X, E1345X JC-52 L1342X, S1343fs JC-54 R876X JC-55 E1306X JC-56 T1023fs, E1554X JC-58 E1295X JC-61 E941X, T1459fs B PDC G007-LK (μmol/L) 0.037 0.11 0.33 1 3 JC-20 83 67 48 47 45 JC-32 94 84 61 55 JC-35 89 71 54 52 JC-39 77 58 56 JC-49 86 24 19 16 JC-58 90 69 59 68 72 JC-7 87 76 85 JC-36 98 80 74 JC-54 79 JC-56 100 97 65 64 JC-33 106 105 111 109 JC-37 99 102 103 JC-47 107 JC-52 104 101 92 JC-55 81 91 95 JC-61 113 PDC IWR-1 (μmol/L) 0.037 0.11 0.33 1 3 9 JC-20 99 97 91 80 58 54 JC-32 93 96 94 74 70 JC-35 85 66 61 JC-39 88 89 82 64 JC-49 103 67 30 21 JC-58 60 78 JC-7 90 76 JC-36 95 JC-54 84 JC-56 106 92 72 JC-61 108 102 79 JC-33 104 111 105 98 JC-37 JC-47 115 JC-52 86 87 JC-55 101 sensitive sensitive intermediate intermediate resistant resistant C 500 1000 1500 sensitive/ intermediate resistant Length of APC (# of amino acids) 20-AAR = 0 20-AAR ≥ 1 * 20-AAR = 0 20-AAR ≥ 1 500 1000 1500 Length of APC (# of amino acids) sensitive/ intermediate resistant * Tanaka et al. Supplementary Figure S7

Cell number (% of control) A JC-35 JC-7 JC-56 JC-49 ** Area of colonies (% of control) sensitive intermediate resistant G007-LK (μM) JC-55 JC-52 B N B 102K 38K Active β-catenin GAPDH JC-35 JC-49 JC-7 JC-56 JC-52 JC-55 C NC CTNNB1 siRNA: Cell number (% of control) sensitive intermediate resistant JC-35 JC-7 JC-56 JC-55 JC-52 JC-49 ** Tanaka et al. Supplementary Figure S8