What does an atom look like?

Slides:



Advertisements
Similar presentations
Does instruction lead to learning?. A mini-quiz – 5 minutes 1.Write down the ground state wavefunction of the hydrogen atom? 2.What is the radius of the.
Advertisements

20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.
Introduction to Molecular Orbitals
Lecture 3 Many - electron atoms. The orbital approximation Putting electrons into orbitals similar to those in the hydrogen atom gives a useful way of.
P460 - Helium1 Multi-Electron Atoms-Helium He + - same as H but with Z=2 He - 2 electrons. No exact solution of S.E. but can use H wave functions and energy.
3D Schrodinger Equation
20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.
Atomic physics PHY232 Remco Zegers Room W109 – cyclotron building
Will the orbital energies for multielectron atoms depend on their angular momentum quantum number ℓ? (A) In the H atom, the orbital energies depend on.
Electronic Configurations
Chapter 5 Alkali atoms Properties of elements in periodic table The Alkali metals.
Atomic Orbitals, Electron Configurations, and Atomic Spectra
P D S.E.1 3D Schrodinger Equation Simply substitute momentum operator do particle in box and H atom added dimensions give more quantum numbers. Can.
Title: Lesson 5 Drawing Electron Configurations Learning Objectives: Know how to write full electron configurations using ideas of subshells Understand.
1 Physical Chemistry III ( ) Chapter 3: Atomic Structure Piti Treesukol Kasetsart University Kamphaeng Saen Campus.
LECTURE 21 THE HYDROGEN AND HYDROGENIC ATOMS PHYSICS 420 SPRING 2006 Dennis Papadopoulos.
Chem The Electronic Structure of Atoms Classical Hydrogen-like atoms: + - Atomic Scale: m or 1 Å Proton mass : Electron mass 1836 : 1 Problems.
© 2014 Pearson Education, Inc. Sherril Soman Grand Valley State University Lecture Presentation Chapter 8-1 Periodic Properties of the Element.
Atomic Structure The theories of atomic and molecular structure depend on quantum mechanics to describe atoms and molecules in mathematical terms.
Last hour: Electron Spin Triplet electrons “avoid each other”, the WF of the system goes to zero if the two electrons approach each other. Consequence:
Chapter 6 Electronic Structure Section 6.5 to End.
Electron & Hole Statistics in Semiconductors A “Short Course”. BW, Ch
Lecture 5. Many-Electron Atoms. Pt
The Hydrogen Atom The only atom that can be solved exactly.
Lecture 9. Many-Electron Atoms
Chapter 6 Section 2. Quantum Mechanics and Atomic Orbitals Wave functions – describes the behavior of the electron, denoted with the Greek letter, ψ The.
Part 2: Many-Electron Atoms and the Periodic Table.
The Development of the Periodic Table and Electron Configuration
What does an atom look like?
Quantum Mechanical Model of the Atom
Chapter 6 Section 2.
Schrodinger’s Equation for Three Dimensions
Molecular Bonding Molecular Schrödinger equation
The QMM Model Mr. Zoitopoulos Legacy High School Chemistry.
Ground State of the He Atom – 1s State
Periodic Table So we now know how multielectron atoms behave
Periodic properties of the elements
The Hydrogen Atom The only atom that can be solved exactly.
Quantum Theory and the Electronic Structure of Atoms
Chapter 8: Periodic Properties of the Elements
Chapter 5 Modern Atomic Models
Solid state physics Lecture 3: chemical bonding Prof. Dr. U. Pietsch.
Electrons in Atoms.
3D Schrodinger Equation
Schrödinger Theory of the Electronic Structure of Matter from a ‘Newtonian’ Perspective Viraht Sahni.
Quantum Theory & Periodicity
Trends in the Periodic Table
“Building up” the atoms in the periodic table
Atomic Structure.
The QMM Model Mr. Matthew Totaro Legacy High School Honors Chemistry.
Originally constructed to represent the patterns observed in the chemical properties of the elements. Mendeleev is given the most credit for the current.
Electron Configuration Guided Notes
Perturbation Theory Lecture 5.
Chapter 8: Periodic properties of the elements
Structure & Properties of Matter
Multielectron Atoms The quantum mechanics approach for treating multielectrom atoms is one of successive approximations The first approximation is to treat.
Last hour: Hartree-Fock Self-Consistent Field (HF-SCF) Method
Chemistry Department of Fudan University
A review of the Evolution of the Model of the Atom Chapter 13-1
Chemistry: Atoms First Julia Burdge & Jason Overby
Hartree Self Consistent Field Method
Chapter 5 Models of the Atom by Christopher Hamaker Chapter 5
Where exactly are the electrons? It’s all a little cloudy!
Chapter 6 Section 2.
Chapter 8: Periodic properties of the elements
Multi-Electronic Atoms
Schrodinger model for the atom (1926)
QMM Model Mr. Matthew Totaro Legacy High School Honors Chemistry.
Orbitals, Basis Sets and Other Topics
PHYS 1444 – Section 02 Lecture #7
Presentation transcript:

What does an atom look like? http://www.biologie.uni-hamburg.de/b-online/e16/hydrogen.htm

The strange world of Quantum Mechanics “It is impossible for both The Ultimate Answer and the Ultimate Question to be known about in the same universe, as they will cancel each other out and take the Universe with them, to be replaced by something even more bizarre..”

Recap hydrogen atom (r)/r x Ylm(q,f) En Fnlm ~ Rnl a 2p orbital (r)/r x Ylm(q,f) En Fnlm ~ Rnl We studied the hydrogen atom spectrum in detail. Let’s look at other elements of the periodic table

3D analogue of drum modes 2p 3p 4p 3d 4d 5d

What changes for other atoms? Multiple electrons, single nucleus Consider Helium. 2 electrons, 2 protons. Simple expectation: En = –Z2/n2 x 13.6 eV Lowest energy -54.4 eV for Z=2, n=1 n=1 n=2 Vacuum Ionization Energy He+ + hn  He++ + e- 54.4 eV He+ n=1 n=2 Vacuum Ionization Energy He + hn  He+ + e- 25 eV He We’re off by 30 eV ! But look at He+ instead

What changes for other atoms? So el-el interaction raises energy levels by 30 eV This is the HARD term to include in our Hamiltonian n=1 n=2 Vacuum Ionization Energy He+ + hn  He++ + e- 54.4 eV He+ n=1 n=2 Vacuum Ionization Energy He + hn  He+ + e- 25 eV He We’re off by 30 eV ! But look at He+ instead

Electron-Electron interaction … … r3 Blue el feels an interaction from (N-1) other electrons with a potential that’s not spherically symmetric U(r2,r3,…,rN) This means we can’t separate variables any more !!! r2 rN r1

Simplify … … But we must simplify things, shouldn’t we? r3 So we smear out all other electrons into a spherically symmetric U(r) that must be calculated self-consistently, but scaled for (Z-1) electrons r2 rN r1

Simplify Self-consistent Field theory or Mean-Field theory r1

Calculating the charge Just like the hydrogen atom with the extra potential Uee(r) F = fnlm(r)Ylm(q,j)/r -ħ2/2m.d2f/dr2 + [U(r) + l(l+1)ħ2/2mr2 + Uee(r)]f = Ef So given Uee, we can find f(r) and thus charge distribution n(r) = |fnlm(r)|2 (over occupied states only) Σ nlm For every atom, need to know electronic configuration to see which states are occupied. eg. Si 1s22s22p63s23p2

Energy Level diagram ∑ l = 0, 1, 2,..., n-1 m = -l, -(l-1), -(l-2),... (l-1), l (2l+1) multiplets s = -½, ½ (2 of them) So one orbit can hold 2 (2l+1) = 2n2 electrons = 2, 8, 18, 32, 50,... l = 0 l = n-1 ∑

Energy Level diagram (n+l) rule (6Z) 1/3 = n+l E ~ Z2 Coulomb repulsion ‘screens’ electrons

Energy Level diagram ∑ Si: 14 electrons 2 (2l+1) = 2n2 electrons = 2, 8, 18, 32, 50,... Si: 14 electrons 2 in first orbit (n=1, l=0)  1s 8 in second orbit (n=2, l=0,1)  2s, 2p 4 in third orbit (n=3, l=0,1,2)  3s, 3p, 3d l = 0 l = n-1 ∑

Energy Level diagram Si: 14 electrons 2 in first orbit (n=1, l=0)  1s 8 in second orbit (n=2, l=0,1)  2s, 2p 4 in third orbit (n=3, l=0,1,2)  3s, 3p, 3d Si 1s22s22p63s23p2

Calculating the potential Getting Uee(r) from n(r)  Pure Coulomb electrostatics “Hartree” approximation E.4pr2 = Qenc/e0 = q∫s(r’)dr’/e0 r Gauss’ Law V(r) = -∫Edr’ = -q∫dr’/4pe0r’2∫s(r’’)dr’’ = q∫s(r’)dr’/4pe0r +∫dr’s(r’)q/4pe0r’ ∞ r r r' ∞ r r ∞ U = qV

Calculating the potential Getting Uee(r) from n(r)  Pure Coulomb electrostatics “Hartree” approximation s(r) = qn(r) Uee(r) = (q2/4pe0)[∫s(r’)dr’/r’ + ∫s(r’)dr’/r](Z-1)/Z Self-consistency: Uee  f(r)  n(r)  s(r)  Uee(r) etc This works quite well for the periodic table!

% Code to calculate Radial functions and energies of silicon clear all close all %Constants (all MKS, except energy which is in eV) hbar=1.055e-34;m=9.110e-31;epsil=8.854e-12;q=1.602e-19; %Lattice Np=200;a=(5e-10Np);R=a*[1:1:Np]; t0=(hbar^2)/(2*m*(a^2))/q; %Hamiltonian,H = Kinetic,T + Potential,U + Ul + Uscf T=(2*t0*diag(ones(1,Np)))-(t0*diag(ones(1,Np-1),1))-(t0*diag(ones(1,Np-1),- 1)); UN=(-q*14/(4*pi*epsil))./R; % Z=14 for silicon l=1;Ul=(l*(l+1)*hbar*hbar/(2*m*q))./(R.*R); Uscf=zeros(1,Np);change=1; while change>0.1 [V,D]=eig(T+diag(UN+Uscf));D=diag(D);[DD,ind]=sort(D); E1s=D(ind(1));psi=V(:,ind(1));P1s=psi.*conj(psi);P1s=P1s'; E2s=D(ind(2));psi=V(:,ind(2));P2s=psi.*conj(psi);P2s=P2s'; E3s=D(ind(3));psi=V(:,ind(3));P3s=psi.*conj(psi);P3s=P3s'; [V,D]=eig(T+diag(UN+Ul+Uscf));D=diag(D);[DD,ind]=sort(D); E2p=D(ind(1));psi=V(:,ind(1));P2p=psi.*conj(psi);P2p=P2p'; E3p=D(ind(2));psi=V(:,ind(2));P3p=psi.*conj(psi);P3p=P3p'; n0=2*(P1s+P2s+P3s)+(6*P2p+2*P3p); % Only count upto 3p2 n=n0*(13/14); % Count 13 out of 14 electrons Unew=(q/(4*pi*epsil))*((sum(n./R)-cumsum(n./R))+(cumsum(n)./R)); change=sum(abs(Unew-Uscf))/Np,Uscf=Unew; End [E1s E2s E3s E2p E3p] Quantum transport: Atom to Transistor (Supriyo Datta)

% -------------------------------------------------------------------------------- % MATLAB code used to generate the figures in the book: % % "Quantum Transport: Atom to Transistor," by Supriyo Datta % published by Cambridge University Press, May 2005 % (ISBN-10: 0521631459 | ISBN-13: 9780521631457) % http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=0521631459 % THIS FILE FOR: Chapter 3, Figure 3.1.4 % Copyright (c) 2005 Supriyo Datta clear all %Constants (all MKS, except energy which is in eV) hbar=1.055e-34;m=9.110e-31;epsil=8.854e-12;q=1.602e-19; %Lattice Np=200;a=(10e-10/Np);R=a*[1:1:Np];t0=(hbar^2)/(2*m*(a^2))/q; %Hamiltonian,H = Kinetic,T + Potential,U + Ul + Uscf T=(2*t0*diag(ones(1,Np)))-(t0*diag(ones(1,Np-1),1))-(t0*diag(ones(1,Np-1),-1)); UN=(-q*14/(4*pi*epsil))./R;% Z=14 for silicon l=1;Ul=(l*(l+1)*hbar*hbar/(2*m*q))./(R.*R); Uscf=zeros(1,Np);change=1; while change>0.1 [V,D]=eig(T+diag(UN+Uscf));D=diag(D);[DD,ind]=sort(D); E1s=D(ind(1));psi=V(:,ind(1));P1s=psi.*conj(psi);P1s=P1s'; E2s=D(ind(2));psi=V(:,ind(2));P2s=psi.*conj(psi);P2s=P2s'; E3s=D(ind(3));psi=V(:,ind(3));P3s=psi.*conj(psi);P3s=P3s'; [V,D]=eig(T+diag(UN+Ul+Uscf));D=diag(D);[DD,ind]=sort(D); E2p=D(ind(1));psi=V(:,ind(1));P2p=psi.*conj(psi);P2p=P2p'; E3p=D(ind(2));psi=V(:,ind(2));P3p=psi.*conj(psi);P3p=P3p'; n0=(2*(P1s+P2s+P3s))+(6*P2p)+(2*P3p); n=n0*(13/14); Unew=(q/(4*pi*epsil))*((sum(n./R)-cumsum(n./R))+(cumsum(n)./R)); %Uex=(-q/(4*pi*epsil))*((n./(4*pi*a*R.*R)).^(1/3));%Unew=Unew+Uex; change=sum(abs(Unew-Uscf))/Np,Uscf=Unew; end [E1s E2s E2p E3s E3p] %analytical solution for 1s hydrogen a0=4*pi*epsil*hbar*hbar/(m*q*q); P0=(4*a/(a0^3))*R.*R.*exp(-2*R./a0); hold on h=plot(R,P1s,'b'); h=plot(R,P0,'bx'); h=plot(R,P3p,'bo'); set(h,'linewidth',[2.0]) set(gca,'Fontsize',[25]) xlabel(' R ( m ) --->'); ylabel(' Probability ---> '); axis([0 5e-10 0 0.08]); grid on Si1s Si3p H1s

Screening gives Aufbau principle -Zq VCoul ≈ + l(l+1)ħ2/2mr2 4pe0r[1 + r/l]2 Screening length long for weak Z (Thomas Fermi) l = 1.65a0/Z1/3 Madelung, Klechkowski, n+l rule To get larger (n+l) need higher Z Large n+l has smaller l, more screening, higher energy

Screening gives Aufbau principle http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/orbdep.html#c1

Screening in solids (Thomas Fermi) Molecule Solids -Zq VCoul ≈ -Zq e-r/l 4pe0r[1 + r/l]2 4pe0r l = 1.65a0/Z1/3 l = √(e/q2D) 2V = -qn/e 2dV = -qdn/e n = n(qV) dn = (∂n/∂E)qdV = qDdV 2dV = -q2DdV/e = -dV/l2

Variational treatment of He <H> = <YHe|-ħ2/2m(12+22 ) –2q2/4pe0r1 –2q2/4pe0r2 +q2/4pe0r12|YHe>/<YHe|YHe> YH1s(r1) = 1/√(pa03) e-Zr1/a0 YHe(r1,r2) = Z3/(pa03) e-Z|r1+r2|a0 Treat Z as a variational parameter

Estimate for screening <H> = <YHe|-ħ2/2m(12+22 ) –2q2/4pe0r1 –2q2/4pe0r2 +q2/4pe0r12|YHe>/<YHe|YHe> = q2/4pe0a0[Z2–4Z+5Z/8] Zmin = 27/16 ≈ 1.7 (15% screening/electron) <H> = 77.5eV Exact = 25 + 54.4 = 79.4eV

Total Energy For He, added energy of 1st electron in presence of 2nd, and 2nd in isolation Can’t just some SCF energies of 1s, 2s, 3s, 2p etc. Must subtract ½ the interaction energy (ie, only include it for 1 member of each pair)

A nonlocal correction (‘Exchange’) F = fnlm(r)Ylm(q,j)/r -ħ2/2m.d2f(r)/dr2 + [U(r) + l(l+1)ħ2/2mr2 + UH(r)]f(r) ∫UF(r,r’)f(r’)dr’ = Ef(r)

Exchange-Correlation Beyond Exchange terms “Density Functional Theory” Uee(r) = (q2/4pe0)[∫s(r’)dr’/r’ + ∫s(r’)dr’/r](Z-1)/Z Uxc(r)  -(q2/4pe0r0), 4pr03/3 = 1/n Self-consistency: Uee  f(r)  n(r)  s(r)  Uee(r) etc Correlation “Hole” (radius r0) El Nearby els Coulomb Blockade