LINEAR CONTROL SYSTEMS

Slides:



Advertisements
Similar presentations
The Performance of Feedback Control Systems
Advertisements

Design with Root Locus Lecture 9.
Modern Control Theory Lecture 5 By Kirsten Mølgaard Nielsen
Multivariable Control
Loop Shaping Professor Walter W. Olson
LINEAR CONTROL SYSTEMS Ali Karimpour Assistant Professor Ferdowsi University of Mashhad.
LINEAR CONTROL SYSTEMS Ali Karimpour Assistant Professor Ferdowsi University of Mashhad.
LINEAR CONTROL SYSTEMS
Automatic control by Meiling CHEN
LINEAR CONTROL SYSTEMS Ali Karimpour Assistant Professor Ferdowsi University of Mashhad.
LINEAR CONTROL SYSTEMS Ali Karimpour Assistant Professor Ferdowsi University of Mashhad.
LINEAR CONTROL SYSTEMS Ali Karimpour Assistant Professor Ferdowsi University of Mashhad.
LINEAR CONTROL SYSTEMS Ali Karimpour Assistant Professor Ferdowsi University of Mashhad.
Lecture 9: Compensator Design in Frequency Domain.
Modern Control Systems (MCS)
Lect. 5 Lead-Lag Control Basil Hamed
LINEAR CONTROL SYSTEMS Ali Karimpour Assistant Professor Ferdowsi University of Mashhad.
Multivariable Control Systems Ali Karimpour Assistant Professor Ferdowsi University of Mashhad.
Professor of Electrical Engineering
PID Control and Root Locus Method
Chapter 7 Control Systems Design by Root-Locus Method 7.1 Introduction -The primary objective of this chapter is to present procedures for the design and.
It is the time response of a system to an input that sets the criteria for our control systems. Many quantitative criteria have been defined to characterise.
INC341 Design with Root Locus
Professor Walter W. Olson Department of Mechanical, Industrial and Manufacturing Engineering University of Toledo Loop Shaping.
INC341 Design Using Graphical Tool (continue)
MESB374 System Modeling and Analysis PID Controller Design
Overall controller design
Chapter 6 Root-Locus Analysis 6.1 Introduction - In some systems simple gain adjustment may move the closed- loop poles to desired locations. Then the.
1 Time Response. CHAPTER Poles and Zeros and System Response. Figure 3.1: (a) System showing input and output; (b) Pole-zero plot of the system;
Exercise 1 (Root Locus) Sketch the root locus for the system shown in Figure K 1 (
Modern Control Systems (MCS) Dr. Imtiaz Hussain Assistant Professor URL :
LINEAR CONTROL SYSTEMS Ali Karimpour Assistant Professor Ferdowsi University of Mashhad.
SKEE 3143 Control Systems Design Chapter 2 – PID Controllers Design
Lecture 11/12 Analysis and design in the time domain using root locus North China Electric Power University Sun Hairong.
Page : PID Controller Chapter 3 Design of Discrete- Time control systems PID C ontroller.
Dr. Hatem Elaydi Digital Control, EELE 4360 Dec. 16, 2014
Time Response Analysis
Design via Root Locus (Textbook Ch.9).
Examples on Compensator Design Spring 2011
Controller design by R.L.
PID Controller.
LINEAR CONTROL SYSTEMS
Basic Design of PID Controller
Chapter 9 Design via Root Locus <<<4.1>>>
LINEAR CONTROL SYSTEMS
Chapter 9 Design via Root Locus <<<4.1>>>
Modern Control Systems (MCS)
Digital Control Systems (DCS)
Feedback: Principles & Analysis
LINEAR CONTROL SYSTEMS
LAG LEAD COMPENSATOR.
Root Loci Analysis (3): Root Locus Approach to Control System Design
LINEAR CONTROL SYSTEMS
UNIT-II TIME RESPONSE ANALYSIS
Compensators.
UNIVERSITI MALAYSIA PERLIS SCHOOL OF ELECTRICAL SYSTEM ENGINEERING
Frequency Response Method
ECE 576 POWER SYSTEM DYNAMICS AND STABILITY
7-4 Control System Design by Frequency Response Approach
Design via Root Locus Techniques
Control System Toolbox (Part-II)
Control System Toolbox (Part-II)
LINEAR CONTROL SYSTEMS
LINEAR CONTROL SYSTEMS
LINEAR CONTROL SYSTEMS
IntroductionLecture 1: Basic Ideas & Terminology
IntroductionLecture 1: Basic Ideas & Terminology
Chapter 5 – The Performance of Feedback Control Systems
Time Response, Stability, and
Exercise 1 For the unit step response shown in the following figure, find the transfer function of the system. Also find rise time and settling time. Solution.
Presentation transcript:

LINEAR CONTROL SYSTEMS Ali Karimpour Associate Professor Ferdowsi University of Mashhad <<<1.1>>> ###Control System Design### {{{Control, Design}}}

Lecture 17 Time domain design of control systems Topics to be covered include: Time domain design of the lead and lag controllers. Design of lag controllers. Design of lead controllers.

Time domain design طراحی حوزه زمانی بله Yes در سیستم زیر آیا می توان k را بگونه ای تنظیم کرد که نسبت میرائی قطبهای مختلط سیستم 0.707 گردد؟ Is it possible to set the value of k such that the damping ratio of complex poles be 0.707? Yes بله + - -25

Time domain design طراحی حوزه زمانی بله Yes در سیستم زیر آیا می توان k را بگونه ای تنظیم کرد که ثابت خطای شیب معادل 100 گردد؟ Is it possible to set the value of k such that ramp error constant be 100? Yes بله + -

Clearly the design is not possible Time domain design طراحی حوزه زمانی در سیستم زیر آیا می توان k را بگونه ای تنظیم کرد که نسبت میرائی قطبهای مختلط سیستم 0.707 و ثابت خطای شیب معادل 100 گردد ؟ Is it possible to set the value of k such that the damping ratio of complex poles be 0.707 and ramp error constant be 100 ? + - Clearly the design is not possible ???!!!??? Other controllers

Lag controller design procedure رویه طراحی کنترلر پس فاز 1- Obtain the root-locus (without controller) and determine the gain k0 to satisfy the desired damping ratio or …... + - 2- Find the gain k to satisfy the desired steady state error (without controller). If k is in conflict with k0 continue. 3- Evaluate the needed controller gain Why? 4- Choose pole and zero of controller near origin such that: 5 - Choose the controller as: What is near? 6 - Check the controller.

Example 1: Designing lag controller مثال 1: طراحی کنترلر پس فاز در سیستم ضرایب کنترلر را بگونه ای تنظیم کنید که نسبت میرائی قطبهای مختلط سیستم 0.707 و ثابت خطای شیب معادل 100 گردد ؟ Determine the controller coefficient such that the damping ratio of complex poles be 0.707 and ramp error constant be 100 ? + - -25 1- Obtain the root-locus (without controller) and determine the gain k0 to satisfy the desired damping ratio or …...

Example 1: Designing lag controller مثال 1: طراحی کنترلر پس فاز در سیستم ضرایب کنترلر را بگونه ای تنظیم کنید که نسبت میرائی قطبهای مختلط سیستم 0.707 و ثابت خطای شیب معادل 100 گردد ؟ Determine the controller coefficient such that the damping ratio of complex poles be 0.707 and ramp error constant be 100 ? + - 2- Determine the gain k to satisfy the desired steady-state error (without controller). If there is a problem then continue.

Example 1: Designing lag controller مثال 1: طراحی کنترلر پس فاز در سیستم ضرایب کنترلر را بگونه ای تنظیم کنید که نسبت میرائی قطبهای مختلط سیستم 0.707 و ثابت خطای شیب معادل 100 گردد ؟ Determine the controller coefficient such that the damping ratio of complex poles be 0.707 and ramp error constant be 100 ? 3- Evaluate the needed controller gain 4- Choose pole and zero of controller near origin such that: 5 - Choose the controller as:

Example 1: Designing lag controller مثال 1: طراحی کنترلر پس فاز + - 6 - Check the controller. -25 Why?

Example 1: Designing lag controller and its step response مثال 1: طراحی کنترلر پس فاز و پاسخ پله + -

Example 2: Designing lag controller مثال 2: طراحی کنترلر پس فاز کنترلی طراحی کنید که ثابت خطای شیب معادل 50 گردد و درصد فراجهش 16% گردد. Design a lag controller such that the ramp error constant be 50 and P.O. be 16 % . + - Why? -2.11 1- Obtain the root-locus and determine the gain k0 to satisfy the desired damping ratio or …...

Example 2: Designing lag controller مثال 2: طراحی کنترلر پس فاز کنترلی طراحی کنید که ثابت خطای شیب معادل 50 گردد و درصد فراجهش 16% گردد. Design a lag controller such that the ramp error constant be 50 and P.O. be 16 % . + - 2- Determine the gain k to satisfy the desired steady-state error. If there is a problem then Continue. (without controller)

Example 2: Designing lag controller مثال 2: طراحی کنترلر پس فاز کنترلی طراحی کنید که ثابت خطای شیب معادل 50 گردد و درصد فراجهش 16% گردد. Design a lag controller such that the ramp error constant be 50 and P.O. be 16 % . 3- Evaluate the needed controller gain 4- Choose pole and zero of controller near origin such that: 5 - Choose the controller as:

Example 2: Designing lag controller مثال 2: طراحی کنترلر پس فاز + - 6 - Check the controller.

Example 2: Designing lag controller مثال 2: طراحی کنترلر پس فاز + - P.O. is not ok Exercise 1: Tune the controller to derive the performance

Designing lag controller طراحی کنترلر پس فاز When the design of lag controller is not possible?

Clearly the design is not possible Time domain design طراحی حوزه زمانی در سیستم زیر آیا می توان k را بگونه ای تنظیم کرد که نسبت میرائی قطبهای مختلط سیستم 0.707 و ثابت خطای شیب معادل 100 گردد ؟ Is it possible to set the value of k such that the damping ratio of complex poles be 0.707 and ramp error constant be 100 ? + - Clearly the design is not possible ???!!!??? Other controllers

Lead controller design procedure رویه طراحی کنترلر پیش فاز 1- From the time-domain specifications obtain the desired location of the closed-loop dominant poles. + - 2- Select the zero of controller. Place the zero on the real value of desired location of the closed-loop dominant poles or on the pole for pole-zero cancellation. 3- Locate the compensator pole so that the angle criterion is satisfied. 4- Determine the compensator gain k, such that the magnitude criterion is satisfied. 5 - Choose the controller as: 6 - Check the controller. 7 - If the overall response rise time, overshoot and settling time is not satisfactory, choose another location of the closed-loop dominant poles.

Example 3: Designing lead controller مثال 3: طراحی کنترلر پیش فاز در سیستم زیر آیا می توان k را بگونه ای تنظیم کرد که نسبت میرائی قطبهای مختلط سیستم 0.707 و ثابت خطای شیب معادل 100 گردد ؟ Is it possible to set the value of k such that the damping ratio of complex poles be 0.707 and ramp error constant be 100 ? + - -25 -40 1- From the time-domain specifications obtain the desired location of the closed-loop dominant poles.

Example 3: Designing lead controller مثال 3: طراحی کنترلر پیش فاز در سیستم زیر آیا می توان k را بگونه ای تنظیم کرد که نسبت میرائی قطبهای مختلط سیستم 0.707 و ثابت خطای شیب معادل 100 گردد ؟ Is it possible to set the value of k such that the damping ratio of complex poles be 0.707 and ramp error constant be 100 ? + - -25 -40 2- Select the zero of controller. Place the zero on the real value of desired location of the closed-loop dominant poles or on the pole for pole-zero cancellation. Where?

Example 3: Designing lead controller مثال 3: طراحی کنترلر پیش فاز Is it possible to set the value of k such that the damping ratio of complex poles be 0.707 and ramp error constant be 100 ? در سیستم زیر آیا می توان k را بگونه ای تنظیم کرد که نسبت میرائی قطبهای مختلط سیستم 0.707 و ثابت خطای شیب معادل 100 گردد ؟ + - -25 -40 40 3- Locate the compensator pole so that the angle criterion is satisfied.

Example 3: Designing lead controller مثال 3: طراحی کنترلر پیش فاز در سیستم زیر آیا می توان k را بگونه ای تنظیم کرد که نسبت میرائی قطبهای مختلط سیستم 0.707 و ثابت خطای شیب معادل 100 گردد ؟ Is it possible to set the value of k such that the damping ratio of complex poles be 0.707 and ramp error constant be 100 ? + - -25 -40 40 4- Determine the compensator gain k, such that the magnitude criterion is satisfied.

Example 3: Designing lead controller مثال 3: طراحی کنترلر پیش فاز در سیستم زیر آیا می توان k را بگونه ای تنظیم کرد که نسبت میرائی قطبهای مختلط سیستم 0.707 و ثابت خطای شیب معادل 100 گردد ؟ Is it possible to set the value of k such that the damping ratio of complex poles be 0.707 and ramp error constant be 100 ? + - 5 - Choose the controller as:

Example 3: Designing lead controller مثال 3: طراحی کنترلر پیش فاز در سیستم زیر آیا می توان k را بگونه ای تنظیم کرد که نسبت میرائی قطبهای مختلط سیستم 0.707 و ثابت خطای شیب معادل 100 گردد ؟ Is it possible to set the value of k such that the damping ratio of complex poles be 0.707 and ramp error constant be 100 ? + - 6 - Check the controller. It is not ok we must try other closed-loop dominant poles Exercise 2: Tune the controller to derive the requested performance

Exercises تمرینها 1 In the following system design a lag controller such that the damping ratio of complex poles be 0.6 and ramp error constant be 80. + - 2 In the following system design a lag controller such that the damping ratio of complex poles be 0.6 and ramp error constant be 80. <<<3.6>>> ###State Space Models### + -

Exercises تمرینها 3 In the following system design a Lead controller such that the damping ratio of complex poles be 0.6 and ramp error constant be 80. + - 4 In the following system design a Lead controller such that the damping ratio of complex poles be 0.6 and ramp error constant be 80. <<<3.6>>> ###State Space Models### + -

تمرینها(ادامه) Exercises(Continue) 5 In the following system design a lag controller such that that the settling time be less than 3 sec. + - 6 In the following system design a lead controller such that that the settling time be less than 3 sec. <<<3.6>>> ###State Space Models### + -

تمرینها(ادامه) Exercises(Continue) 5 In the following system design a Lead controller such that the damping ratio of complex poles be 0.4.(Final 1390) + -