Epipolar Geometry class 11

Slides:



Advertisements
Similar presentations
Projective 3D geometry class 4
Advertisements

Epipolar Geometry.
3D reconstruction.
Computing 3-view Geometry Class 18
Jan-Michael Frahm, Enrique Dunn Spring 2012
Epipolar Geometry class 11 Multiple View Geometry Comp Marc Pollefeys.
Camera calibration and epipolar geometry
Scene Planes and Homographies class 16 Multiple View Geometry Comp Marc Pollefeys.
More on single-view geometry class 10 Multiple View Geometry Comp Marc Pollefeys.
Robot Vision SS 2008 Matthias Rüther 1 ROBOT VISION Lesson 6: Shape from Stereo Matthias Rüther Slides partial courtesy of Marc Pollefeys Department of.
Epipolar Geometry Class 7 Read notes Feature tracking run iterative L-K warp & upsample Tracking Good features Multi-scale Transl. Affine.
3D reconstruction class 11
Projective 2D geometry (cont’) course 3
Parameter estimation class 5 Multiple View Geometry Comp Marc Pollefeys.
Epipolar geometry. (i)Correspondence geometry: Given an image point x in the first view, how does this constrain the position of the corresponding point.
Uncalibrated Geometry & Stratification Sastry and Yang
Epipolar Geometry and the Fundamental Matrix F
Multiple View Geometry Marc Pollefeys University of North Carolina at Chapel Hill Modified by Philippos Mordohai.
Multiple View Geometry Comp Marc Pollefeys
Multiple View Geometry Marc Pollefeys University of North Carolina at Chapel Hill Modified by Philippos Mordohai.
Multiple View Geometry in Computer Vision
Assignment 2 Compute F automatically from image pair (putative matches, 8-point, 7-point, iterative, RANSAC, guided matching) (due by Wednesday 19/03/03)
Camera Models class 8 Multiple View Geometry Comp Marc Pollefeys.
 -Linearities and Multiple View Tensors Class 19 Multiple View Geometry Comp Marc Pollefeys.
Multiple View Geometry Marc Pollefeys University of North Carolina at Chapel Hill Modified by Philippos Mordohai.
More on single-view geometry class 10 Multiple View Geometry Comp Marc Pollefeys.
May 2004Stereo1 Introduction to Computer Vision CS / ECE 181B Tuesday, May 11, 2004  Multiple view geometry and stereo  Handout #6 available (check with.
Lec 21: Fundamental Matrix
Algorithm Evaluation and Error Analysis class 7 Multiple View Geometry Comp Marc Pollefeys.
Camera Calibration class 9 Multiple View Geometry Comp Marc Pollefeys.
Projective 2D geometry course 2 Multiple View Geometry Comp Marc Pollefeys.
Epipolar geometry Class 5
Multiple View Geometry Marc Pollefeys University of North Carolina at Chapel Hill Modified by Philippos Mordohai.
The Trifocal Tensor Class 17 Multiple View Geometry Comp Marc Pollefeys.
Epipolar geometry Class 5. Geometric Computer Vision course schedule (tentative) LectureExercise Sept 16Introduction- Sept 23Geometry & Camera modelCamera.
55:148 Digital Image Processing Chapter 11 3D Vision, Geometry Topics: Basics of projective geometry Points and hyperplanes in projective space Homography.
Projective 2D geometry course 2 Multiple View Geometry Comp Marc Pollefeys.
Lecture 11 Stereo Reconstruction I Lecture 11 Stereo Reconstruction I Mata kuliah: T Computer Vision Tahun: 2010.
Multi-view geometry.
Epipolar geometry The fundamental matrix and the tensor
Projective cameras Motivation Elements of Projective Geometry Projective structure from motion Planches : –
Lecture 04 22/11/2011 Shai Avidan הבהרה : החומר המחייב הוא החומר הנלמד בכיתה ולא זה המופיע / לא מופיע במצגת.
Stereo Course web page: vision.cis.udel.edu/~cv April 11, 2003  Lecture 21.
Robot Vision SS 2007 Matthias Rüther 1 ROBOT VISION Lesson 6a: Shape from Stereo, short summary Matthias Rüther Slides partial courtesy of Marc Pollefeys.
1 Formation et Analyse d’Images Session 7 Daniela Hall 25 November 2004.
Two-view geometry Epipolar geometry F-matrix comp. 3D reconstruction
Geometry of Multiple Views
Two-view geometry. Epipolar Plane – plane containing baseline (1D family) Epipoles = intersections of baseline with image planes = projections of the.
55:148 Digital Image Processing Chapter 11 3D Vision, Geometry Topics: Basics of projective geometry Points and hyperplanes in projective space Homography.
MASKS © 2004 Invitation to 3D vision Uncalibrated Camera Chapter 6 Reconstruction from Two Uncalibrated Views Modified by L A Rønningen Oct 2008.
Uncalibrated reconstruction Calibration with a rig Uncalibrated epipolar geometry Ambiguities in image formation Stratified reconstruction Autocalibration.
Parameter estimation class 5 Multiple View Geometry CPSC 689 Slides modified from Marc Pollefeys’ Comp
Lec 26: Fundamental Matrix CS4670 / 5670: Computer Vision Kavita Bala.
Projective 2D geometry course 2 Multiple View Geometry Comp Marc Pollefeys.
Multiview geometry ECE 847: Digital Image Processing Stan Birchfield Clemson University.
Multi-view geometry. Multi-view geometry problems Structure: Given projections of the same 3D point in two or more images, compute the 3D coordinates.
55:148 Digital Image Processing Chapter 11 3D Vision, Geometry
Parameter estimation class 5
Two-view geometry Computer Vision Spring 2018, Lecture 10
Epipolar geometry.
3D Photography: Epipolar geometry
Multiple View Geometry Comp Marc Pollefeys
More on single-view geometry class 10
Multiple View Geometry Comp Marc Pollefeys
3D reconstruction class 11
Uncalibrated Geometry & Stratification
Two-view geometry Epipolar geometry F-matrix comp. 3D reconstruction
Two-view geometry.
Two-view geometry.
Parameter estimation class 6
Presentation transcript:

Epipolar Geometry class 11 Multiple View Geometry Comp 290-089 Marc Pollefeys

Multiple View Geometry course schedule (subject to change) Jan. 7, 9 Intro & motivation Projective 2D Geometry Jan. 14, 16 (no class) Jan. 21, 23 Projective 3D Geometry Jan. 28, 30 Parameter Estimation Feb. 4, 6 Algorithm Evaluation Camera Models Feb. 11, 13 Camera Calibration Single View Geometry Feb. 18, 20 Epipolar Geometry 3D reconstruction Feb. 25, 27 Fund. Matrix Comp. Structure Comp. Mar. 4, 6 Planes & Homographies Trifocal Tensor Mar. 18, 20 Three View Reconstruction Multiple View Geometry Mar. 25, 27 MultipleView Reconstruction Bundle adjustment Apr. 1, 3 Auto-Calibration Papers Apr. 8, 10 Dynamic SfM Apr. 15, 17 Cheirality Apr. 22, 24 Duality Project Demos

More Single-View Geometry Projective cameras and planes, lines, conics and quadrics. Camera calibration and vanishing points, calibrating conic and the IAC

Two-view geometry Epipolar geometry 3D reconstruction F-matrix comp. Structure comp.

Three questions: Correspondence geometry: Given an image point x in the first view, how does this constrain the position of the corresponding point x’ in the second image? (ii) Camera geometry (motion): Given a set of corresponding image points {xi ↔x’i}, i=1,…,n, what are the cameras P and P’ for the two views? (iii) Scene geometry (structure): Given corresponding image points xi ↔x’i and cameras P, P’, what is the position of (their pre-image) X in space?

The epipolar geometry (a) C,C’,x,x’ and X are coplanar

The epipolar geometry b What if only C,C’,x are known?

The epipolar geometry a All points on p project on l and l’

The epipolar geometry b Family of planes p and lines l and l’ Intersection in e and e’

The epipolar geometry epipoles e,e’ = intersection of baseline with image plane = projection of projection center in other image = vanishing point of camera motion direction an epipolar plane = plane containing baseline (1-D family) an epipolar line = intersection of epipolar plane with image (always come in corresponding pairs)

Example: converging cameras

Example: motion parallel with image plane

The fundamental matrix F algebraic representation of epipolar geometry we will see that mapping is (singular) correlation (i.e. projective mapping from points to lines) represented by the fundamental matrix F

The fundamental matrix F geometric derivation mapping from 2-D to 1-D family (rank 2)

The fundamental matrix F algebraic derivation (note: doesn’t work for C=C’  F=0)

The fundamental matrix F correspondence condition The fundamental matrix satisfies the condition that for any pair of corresponding points x↔x’ in the two images

The fundamental matrix F F is the unique 3x3 rank 2 matrix that satisfies x’TFx=0 for all x↔x’ Transpose: if F is fundamental matrix for (P,P’), then FT is fundamental matrix for (P’,P) Epipolar lines: l’=Fx & l=FTx’ Epipoles: on all epipolar lines, thus e’TFx=0, x e’TF=0, similarly Fe=0 F has 7 d.o.f. , i.e. 3x3-1(homogeneous)-1(rank2) F is a correlation, projective mapping from a point x to a line l’=Fx (not a proper correlation, i.e. not invertible)

Epipolar Line Homography

The epipolar line geometry l,l’ epipolar lines, k line not through e  l’=F[k]xl and symmetrically l=FT[k’]xl’ (pick k=e, since eTe≠0)

Pure Translation camera motion

Fundamental matrix for pure translation Forward motion

Fundamental matrix for pure translation example: motion starts at x and moves towards e, faster depending on Z pure translation: F only 2 d.o.f., xT[e]xx=0  auto-epipolar

General motion

Geometric representation of F Fs: Steiner conic, 5 d.o.f. Fa=[xa]x: pole of line ee’ w.r.t. Fs, 2 d.o.f.

Pure planar motion Steiner conic Fs is degenerate (two lines)

Projective transformation and invariance Derivation based purely on projective concepts F invariant to transformations of projective 3-space unique not unique canonical form

Projective ambiguity of cameras given F previous slide: at least projective ambiguity this slide: not more! Show that if F is same for (P,P’) and (P,P’), there exists a projective transformation H so that P=HP and P’=HP’ ~ ~ ~ lemma:

Canonical cameras given F F matrix corresponds to P,P’ iff P’TFP is skew-symmetric Possible choice:

The essential matrix ~fundamental matrix for calibrated cameras (remove K) 5 d.o.f. (3 for R; 2 for t up to scale) E is essential matrix if and only if two singularvalues are equal (and third=0)

(only one solution where points is in front of both cameras) Four possible reconstructions from E (only one solution where points is in front of both cameras)

Next class: 3D reconstruction