Use Case: Multi vendor domain OMS interworking

Slides:



Advertisements
Similar presentations
Multi Domain Traffic Engineered Transport Networks (E-OTN, PTN) supporting P2P, P2MP, RMP and MP2MP Ethernet Services An overview of architecture and functionality.
Advertisements

Next-Generation ROADMs
Compatibility of multivendor Dense Wavelength Division Multiplexing System Master Thesis Jan Waldén, Helsinki Supervisor PhD Timo Korhonen.
Reconfigurable Optical Networks using WSS based ROADMs Steven D. Robinson VP, Product Management  Five Essential Elements of the.
Fiber-Optic Network Architectures. OSI & Layer Model This Course.
Reconfigurable OADMs Reconfigurable OADM (ROADM)
© 2008 Cisco Systems, Inc. All rights reserved.Cisco ConfidentialPresentation_ID 1 SRLG Issues and Potential Solutions CCAMP – IETF 86 – Orlando
1 Common Constraint Information Extension to GMPLS Route for WDM Switch Optical Network draft-kang-ccamp-wdm-switch-info-00.txt Zhihong Kang
Framework for G.709 Optical Transport Network (OTN) draft-ietf-ccamp-gmpls-g709-framework-05 CCAMP WG, IETF 82 nd Taipei.
Local-Area Networks. Topology Defines the Structure of the Network – Physical topology – actual layout of the wire (media) – Logical topology – defines.
ONOS OPTICAL SERVICE – ODU CROSS CONNECT PROPOSAL Aliza Nagauker Rimon Ashkenazy (19/01/2016)
Chapter 2 PHYSICAL LAYER.
OTSi Termination Model
Network Resources.
NSI Topology Thoughts on how topology fits into the NSI architecture
FRD Examples November 28, 2017 L. Ong.
draft-ietf-teas-yang-te-topo-04
PhD candidate: Shuna Yang Department of Telematics, NTNU, Norway
Otcc2018.LYO.001 – MDML Example for Feb02
Multi-Layer Scenarios
Connecting LANs, Backbone Networks,
The University of Adelaide, School of Computer Science
CHAPTER 8 Network Management
Flexible Transport Networks
Multi-Layer Scenarios
draft-ggalimbe-ccamp-flexigrid-carrier-label-02
November 6-11, 2017 Nov. 10 version L. Ong
Photonics in ONF Core and TAPI
ONF OTCC TAPI Contribution
The University of Adelaide, School of Computer Science
Photonic model Nigel Davis (Ciena)
Rod LU (ZTE) Yunbo LI (CMCC) Yang ZHAO (CMCC) Yunbin XU (CATR)
Optical Forwarding-Constructs in TAPI Model
Issues and solutions raised in CMCC lab test
Synchronous Optical Network (SONET)
TAPI NBI specification based on common Topology and Service abstraction models for Multi-layer WDM/OTN networks Arturo Mayoral, Victor López, Oscar Gonzalez.
Partitioning and Abstraction Scenarios
MCS Multicast Switch for Next Generation ROADM. Multicast optical switch ( MCS ) is based on PLC technology and MEMS technology , which can route any.
TAPI Topology & Connectivity Enhancements Proposal for v3.0
Photonic Model (ONF Share)
Multi-Layer Scenarios
Partially disaggregated with no express channel
Photonic Model (ONF Share)
Multi-Layer Scenarios
SG15 update – February 2019 Media architecture Stephen Shew
Service and Resource Resiliency
OpenOLS & OpenDevice Overview
Photonic Model (ONF Share)
Photonic model Nigel Davis (Ciena)
Photonic Model (ONF Share)
ONF Project leader: Andrea Campanella
Context and scope In a disaggregated environment when two different entities are in charge of managing optical terminals (OT) and open line systems (OLS)
TAPI Photonic Media Model
ONF IM & TAPI Development Cycle Model development process
Device Management Profile and Requirements
Task xx Scope – Expected Equipment
SG15 update – February 2019 Media architecture Stephen Shew
CMCC Laboratory test of SOTN Northbound interface based on TAPI 2.0
TAPI Photonic Media Model
Karthik Sethuraman, NEC
Multi-Layer Scenarios
TAPI Overview* Karthik Sethuraman, NEC May 5, 2019 *animated.
Karthik Sethuraman, NEC
TAPI Topology & Connectivity Concepts
TAPI Topology & Connectivity Enhancements Proposal for v3.0
Issue 1: Distinction between nominal and backup paths
Transport network requirements for TAPI considering NBI
Karthik Sethuraman, NEC Andrea Mazzini, Nokia
Multi-Layer Scenarios
Presentation transcript:

Use Case: Multi vendor domain OMS interworking Disaggregated OMS

Multi vendor domain optical network λ CD: colorless directionless Amplifier (uni) Transponder (bidi) Disaggregated-OTSi λ λ λ λ ROADMCD ROADMCD λ ROADM CD ROADM CD λ λ Idea: Split the optical domain into subdomains ROADM domain vendor A ROADM domain vendor 1 Transponder domain vendor A Transponder domain vendor 1 Interdomain Transponder-ROADM (OTSi) Interdomain OMS ROADM CD ROADM CD Disaggregated-OMS λ λ λ λ

Control Architecture Photonic Cloud 1 Photonic Cloud A Orchestration / Multi Domain Controller 1A Path computation and validation TAPI v2.0.1 (+) TAPI v2.0.1 (+) Domain Controller 1 Domain Controller A λ λ Photonic Cloud 1 Photonic Cloud A λ λ OMS λ λ OMS λ λ OTSi OTSi λ λ

Use Cases 100G Service (C1) with primary path secondary path λ CD: colorless directionless Amplifier (uni) Transponder (bidi) λ λ λ λ ROADMCD ROADMCD ROADM CD ROADM CD λ λ λ λ ROADM CD ROADM CD 100G Service (C1) with primary path secondary path restauration path λ λ λ λ

Use Cases 100G Service (C1) with primary path secondary path λ λ λ λ λ CD: colorless directionless Amplifier (uni) Transponder (bidi) λ λ λ λ ROADMCD ROADMCD ROADM CD ROADM CD λ λ λ λ ROADM CD ROADM CD 100G Service (C1) with primary path secondary path λ λ λ λ

Node NodeEdgePoint Device ConnectivityServiceEndPoint X ServiceInterfacePoint ConnectivityService Connection Link Transitional Link ConnectionEndPoint A CTP and CTP CTP and TTP TTP CTP

Photonic Domain Vendor A λ CD: colorless directionless Amplifier (uni) Transponder (bidi) ROADM CD ROADM CD ROADM CD

Photonic Domain Vendor 1 λ CD: colorless directionless Amplifier (uni) Transponder (bidi) ROADM CD ROADM CD ROADM CD

OTSi Domain Vendor A Service via own Photonic domain λ CD: colorless directionless Amplifier (uni) Transponder (bidi) λ λ Service via own Photonic domain λ Service via two Photonic domains λ >> 3 use cases Service via foreign Photonic domain λ λ

OTSi Domain Vendor 1 Service via own Photonic domain λ CD: colorless directionless Amplifier (uni) Transponder (bidi) λ λ Service via own Photonic domain Service via two Photonic domains λ λ >> 3 use cases Service via foreign Photonic domain λ λ

Transponder with ETH connection with ODU4 connection T1.A T1.A ETH-FC ODU4-FC SIP-ETY ETH-CTP OTU4-TTP ODU4-TTP OTU4-TTP ETY-TTP ETH-CTP T1.A ODU4-TTP OTSi-TTP SIP-OTSiA SIP-ETY ODU4-TTP OTSi-TTP SIP-OTSiA ETY-TTP ETH-CTP T1.A NEP NEP NEP NEP

OTSi Domain Vendor X ONF CoreModel/TAPI instance model ETH-CTP ODU4-CTP ODU4-FC OTU4-TTP OTSI-TTP ETY-TTP T3 ETH-CTP ODU4-CTP ODU4-FC OTU4-TTP OTSI-TTP ETY-TTP Forwarding Domain OTSi-TTPs T1 ETH-CTP ODU4-CTP ODU4-FC OTU4-TTP OTSI-TTP ETY-TTP T4 ETH-CTP ODU4-CTP ODU4-FC OTU4-TTP OTSI-TTP ETY-TTP OTSi-FC OTSi-FC OTSi-FC T5 ETH-CTP ODU4-CTP ODU4-FC ODU4-TTP OTU4-CTP OTSI-TTP ETY-TTP T6 ODU-CTP

ROADM LTPs and path

Multivendor ROADM-Domain Rule! Connection-end-points will be created/deleted together with the service. Note: This figures and also the following figures show also connection-end-points where no service exists. OMS-TTP 5x OTSi-CTP A3 C1 OTSi-FCs 1 C2 A2 OMS-FC C3 A1 This ROADM representation does not distinguish between Add/Drop directions and Line (network) directions. This may change, see page 11 and 12. 5x OTSi-CTP OMS-TTP

Orchestrator Instance Model for add/drop ROADM with 5 channels (OTSi-CTPs) in 3 directions One direction for colorless add/drop 2x FC Multi vendor Domain Layer: OTSi 2x 100G client / OTU4 Transponder colorless mux/demux (bidi) SIP-OTSiA SIP-OTSiA Interdomain (transponder, WSS) port connections between transponder line port and filter client port SIP-OTSiA SIP-OTSiA Transponder-Domain-Vendor-B ROADM-Domain-Vendor-A

Instance Model for add/drop ROADM with up to 5 channels (OTSi-CTPs) in 2 OMS directions and colorless directionless add/drop 2x FC Multi vendor Domain Layer: OTSi 2x 100G client / OTU4 Transponder colorless mux/demux (bidi) Transponder-Domain-Vendor-A 5x OTSi-CTP ODU4-FC SIP-ETY ODU4-TTP OTU4-CTP SIP-OTSiA T1.A ODU4-CTP OTSi-TTP ETY-TTP ETH-CTP SIP-OTSiA A.2 Interdomain physical port connetions (transponder, ROADM) port connections between transponder line port and filter client port ODU4-FC SIP-OTSiA SIP-ETY ODU4-TTP ODU4-CTP OTU4-CTP OTSI-TTP ETY-TTP ETH-CTP T1.1 SIP-OTSiA Owned Node Edge Points Exists always and can be used to represent physical port connections OTSiCTPS are created together as result to the service creation. Transponder-Domain-Vendor-B ROADM-Domain-Vendor-A Contention otsi-node-edge-point-spec - available frequency slot - occupied Frequency slot

Connection to show cross connect in WDM connection end point CTP to indicate specific channel available on client port of filter module otsi-connection-end-point-spec - otsi-ctp - selected frequency slot connection end point CTP to indicate specific channel in use (only exposed when channel is created) otsi-connection-end-point-spec - otsi-ctp - selected frequency slot Owned Node Edge Point (Client Port of Filter module) OMS Termination otsi-node-edge-point-spec - available frequency slot - occupied Frequency slot Owned Node Edge Point (Network port of WSS) OMS Termination otsi-node-edge-point-spec - available frequency slot - occupied Frequency slot 1 A2

(Owned-node-edge-point) Transponder ODU4 (fixed backplane) connection T1A ETH-CTP ODU4-TTP ODU4-FC ODU4-CTP OTU4-CTP OTSi-TTP ETY-TTP ODU4 TTP ODU4 CTP ETH CTP OTU4 TTP OTSi CTP OTSi (OCH) Connection ETY TTP OTSi TTP (Service end point) Owned Node Edge Point (Client Port of Transponder) – Mapped to a service Interface point Owned Node Edge Point (Network port of Transponder) Owned Node Edge Point (Network port of WSS) OMS Termination otsi-node-edge-point-spec - available frequency slot - occupied Frequency slot OAM tree of TAPI for ROADM Reference to NEP rx power level per channel tx power level per channel Service End-point Service End-point Filter Client Port (Owned-node-edge-point) Physical Service End-point

Proposed TAPI extension module “tapi-otsi” { [...] augment "/tapi-common:context/tapi-connectivity:connectivity-service" { uses optical-constraint; description "Augments the base connectivity-service with optical routing constraint"; } grouping optical-constraint { description “none"; list include-optical-channel-characteristic { key 'local-id'; uses tapi-common:local-class; uses frequency-slot; description “List of optical channel frequency that must be used when calculating the optical route.” list exclude-optical-channel-characteristic { “List of optical channel frequency that must not be used when In order to create an OTSi service in a “Transponder only” domain (see page 5 and 6) and in order to configure the frequency by the domain controller on the transponders an “optical-constraint” object class is proposed: