CSE 4213: Computer Networks II

Slides:



Advertisements
Similar presentations
Introduction 1 Lecture 13 Transport Layer (Transmission Control Protocol) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer.
Advertisements

Transport Layer3-1 Transport Overview and UDP. Transport Layer3-2 Goals r Understand transport services m Multiplexing and Demultiplexing m Reliable data.
Transport Layer3-1 TCP. Transport Layer3-2 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r full duplex data: m bi-directional data flow in same connection.
Data Communications and Computer Networks Chapter 3 CS 3830 Lecture 16 Omar Meqdadi Department of Computer Science and Software Engineering University.
1 Chapter 3 Transport Layer. 2 Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4.
1 Transport Layer Lecture 9 Imran Ahmed University of Management & Technology.
Transport Layer3-1 Summary of Reliable Data Transfer Checksums help us detect errors ACKs and NAKs help us deal with errors If ACK/NAK has errors sender.
Week 9 TCP9-1 Week 9 TCP 3 outline r 3.5 Connection-oriented transport: TCP m segment structure m reliable data transfer m flow control m connection management.
Transport Layer3-1 Chapter 3: Transport Layer Our goals: r understand principles behind transport layer services: m multiplexing/demultipl exing m reliable.
EEC-484/584 Computer Networks Lecture 15 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Computer Communication Digital Communication in the Modern World Transport Layer Multiplexing, UDP
Chapter 3: Transport Layer
Transport Layer3-1 Transport Layer Our goals: r understand principles behind transport layer services: m multiplexing/demultipl exing m reliable data transfer.
Transport Layer 3-1 Transport Layer r To learn about transport layer protocols in the Internet: m TCP: connection-oriented protocol m Reliability protocol.
1 Announcement r Project 2 out m Much harder than project 1, start early! r Homework 2 due next Tuesday.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
Lecture 8 Chapter 3 Transport Layer
Announcement Project 2 out –Much harder than project 1, start early! Homework 2 due next Tu.
Chapter 3 Transport Layer
Transport Layer3-1 Data Communication and Networks Lecture 7 Transport Protocols: TCP October 21, 2004.
Transport Layer session 1 TELE3118: Network Technologies Week 9: Transport Layer Basics Some slides have been taken from: r Computer Networking:
3-1 Transport services and protocols r provide logical communication between app processes running on different hosts r transport protocols run in end.
8-1 Transport Layer Our goals: r understand principles behind transport layer services: m multiplexing/demultipl exing m reliable data transfer m flow.
Transport Layer3-1 TCP sender (simplified) NextSeqNum = InitialSeqNum SendBase = InitialSeqNum loop (forever) { switch(event) event: data received from.
Network LayerII-1 RSC Part III: Transport Layer 3. TCP Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are, mainly, part.
Transport Layer1 Reliable Transfer Ram Dantu (compiled from various text books)
Data Communications and Computer Networks Chapter 3 CS 3830 Lecture 12 Omar Meqdadi Department of Computer Science and Software Engineering University.
CS 1652 The slides are adapted from the publisher’s material All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Jack Lange.
Network LayerII-1 RSC Part III: Transport Layer 1. Basic Concepts Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are,
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 All.
3: Transport Layer3b-1 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r full duplex data: m bi-directional data flow in same connection m MSS: maximum.
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Part.
Chapter 3 Transport Layer
Transport Layer3-1 Chapter 3: Transport Layer Our goals: r understand principles behind transport layer services: m multiplexing/demultipl exing m reliable.
Transport Layer1 Ram Dantu (compiled from various text books)
Lecture91 Administrative Things r Return homework # 1 r Review some problems in homework # 1 r Questions about grading? Yona r WebCT for CSE245 is working!
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July A.
Transport Layer 3-1 Chapter 3 Outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP.
Transport Layer3-1 Transport Layer Our lives begin to end, the day we become silent about things that matter.
September 26 th, 2013 CS1652 The slides are adapted from the publisher’s material All material copyright J.F Kurose and K.W. Ross, All Rights.
MULTIPLEXING/DEMULTIPLEXING, CONNECTIONLESS TRANSPORT.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
Transport Layer3-1 Transport Layer If you are going through Hell Keep going.
Transport Layer3-1 Chapter 3: Transport Layer Our goals: r understand principles behind transport layer services: m multiplexing/demultipl exing m reliable.
Transport Layer1 Goals: r understand principles behind transport layer services and protocols: m UDP m TCP Overview: r transport layer services r multiplexing/demultiplexing.
Introduction 1-1 source application transport network link physical HtHt HnHn M segment HtHt datagram destination application transport network link physical.
Chapter 3 Transport Layer
Chapter 3 Transport Layer
Transport Layer Slides are originally from instructor: Carey Williamson at University of Calgary Very minor modification are made Notes derived from “Computer.
09-Transport Layer: TCP Transport Layer.
Chapter 3 outline 3.1 Transport-layer services
Chapter 3 outline 3.1 Transport-layer services
CS 1652 Jack Lange University of Pittsburgh
Slides have been adapted from:
TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 full duplex data:
Introduction to Networks
06- Transport Layer Transport Layer.
CS1652 TCP Jack Lange University of Pittsburgh
Review: UDP demultiplexing TCP demultiplexing Multiplexing?
CS 1652 Jack Lange University of Pittsburgh
Chapter 3 Transport Layer
Transport Layer Goals: Overview:
Transport Layer Our goals:
September 19th, 2013 CS1652 Jack Lange University of Pittsburgh
Chapter 3 outline 3.1 Transport-layer services
Chapter 3 Transport Layer
Chapter 3 Transport Layer
Chapter 3 Transport Layer
Transport Layer Our goals:
Presentation transcript:

CSE 4213: Computer Networks II Suprakash Datta datta@cs.yorku.ca Office: CSEB 3043 Phone: 416-736-2100 ext 77875 Course page: http://www.cs.yorku.ca/course/4213 These slides are adapted from Jim Kurose’s slides. 11/11/2018 COSC 4213 - S.Datta

Next The transport layer 11/11/2018 COSC 4213 - S.Datta

Chapter 3: Transport Layer Our goals: understand principles behind transport layer services: multiplexing/demultiplexing reliable data transfer flow control congestion control learn about transport layer protocols in the Internet: UDP: connectionless transport TCP: connection-oriented transport TCP congestion control 11/11/2018 COSC 4213 - S.Datta

3.5 Connection-oriented transport: TCP Chapter 3 outline 3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 3.6 Principles of congestion control 3.7 TCP congestion control 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer - LEAVE OUT 11/11/2018 COSC 4213 - S.Datta

Transport services and protocols provide logical communication between app processes running on different hosts transport protocols run in end systems send side: breaks app messages into segments, passes to network layer rcv side: reassembles segments into messages, passes to app layer more than one transport protocol available to apps Internet: TCP and UDP application transport network data link physical network data link physical network data link physical network data link physical logical end-end transport network data link physical network data link physical application transport network data link physical 11/11/2018 COSC 4213 - S.Datta

Transport vs. network layer network layer: logical communication between hosts transport layer: logical communication between processes relies on, enhances, network layer services Household analogy: 12 kids sending letters to 12 kids processes = kids app messages = letters in envelopes hosts = houses transport protocol = Ann and Bill network-layer protocol = postal service 11/11/2018 COSC 4213 - S.Datta

Internet transport-layer protocols reliable, in-order delivery (TCP) congestion control flow control connection setup unreliable, unordered delivery: UDP no-frills extension of “best-effort” IP services not available: delay guarantees bandwidth guarantees application transport network data link physical network data link physical network data link physical network data link physical logical end-end transport network data link physical network data link physical application transport network data link physical 11/11/2018 COSC 4213 - S.Datta

3.1 Transport-layer services 3.2 Multiplexing and demultiplexing Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 3.6 Principles of congestion control 3.7 TCP congestion control 11/11/2018 COSC 4213 - S.Datta

Multiplexing/demultiplexing Multiplexing at send host: Demultiplexing at rcv host: delivering received segments to correct socket gathering data from multiple sockets, enveloping data with header (later used for demultiplexing) = socket = process application transport network link physical P1 P2 P3 P4 host 1 host 2 host 3 11/11/2018 COSC 4213 - S.Datta

How demultiplexing works host receives IP datagrams each datagram has source IP address, destination IP address each datagram carries 1 transport-layer segment each segment has source, destination port number (recall: well-known port numbers for specific applications) host uses IP addresses & port numbers to direct segment to appropriate socket 32 bits source port # dest port # other header fields application data (message) TCP/UDP segment format 11/11/2018 COSC 4213 - S.Datta

Connectionless demultiplexing Create sockets with port numbers: DatagramSocket mySocket1 = new DatagramSocket(99111); DatagramSocket mySocket2 = new DatagramSocket(99222); UDP socket identified by two-tuple: (dest IP address, dest port number) When host receives UDP segment: checks destination port number in segment directs UDP segment to socket with that port number IP datagrams with different source IP addresses and/or source port numbers directed to same socket 11/11/2018 COSC 4213 - S.Datta

Connectionless demux (cont) DatagramSocket serverSocket = new DatagramSocket(6428); Client IP:B P2 client IP: A P1 P3 server IP: C SP: 6428 DP: 9157 SP: 9157 DP: 6428 DP: 5775 SP: 5775 SP provides “return address” 11/11/2018 COSC 4213 - S.Datta

Connection-oriented demux TCP socket identified by 4-tuple: source IP address source port number dest IP address dest port number recv host uses all four values to direct segment to appropriate socket Server host may support many simultaneous TCP sockets: each socket identified by its own 4-tuple Web servers have different sockets for each connecting client non-persistent HTTP will have different socket for each request 11/11/2018 COSC 4213 - S.Datta

Connection-oriented demux (cont) P1 client IP: A P4 P5 P6 P2 P1 P3 SP: 5775 DP: 80 S-IP: B D-IP:C SP: 9157 SP: 9157 DP: 80 DP: 80 Client IP:B server IP: C S-IP: A S-IP: B D-IP:C D-IP:C 11/11/2018 COSC 4213 - S.Datta

Connection-oriented demux: Threaded Web Server P1 client IP: A P4 P2 P1 P3 SP: 5775 DP: 80 S-IP: B D-IP:C SP: 9157 SP: 9157 DP: 80 DP: 80 Client IP:B server IP: C S-IP: A S-IP: B D-IP:C D-IP:C 11/11/2018 COSC 4213 - S.Datta

3.1 Transport-layer services 3.2 Multiplexing and demultiplexing Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 3.6 Principles of congestion control 3.7 TCP congestion control 11/11/2018 COSC 4213 - S.Datta

UDP: User Datagram Protocol [RFC 768] “no frills,” “bare bones” Internet transport protocol “best effort” service, UDP segments may be: lost delivered out of order to app connectionless: no handshaking between UDP sender, receiver each UDP segment handled independently of others Why is there a UDP? no connection establishment (which can add delay) simple: no connection state at sender, receiver small segment header no congestion control: UDP can blast away as fast as desired 11/11/2018 COSC 4213 - S.Datta

UDP: more other UDP uses often used for streaming multimedia apps loss tolerant rate sensitive other UDP uses DNS SNMP reliable transfer over UDP: add reliability at application layer application-specific error recovery! 32 bits source port # dest port # Length, in bytes of UDP segment, including header length checksum Application data (message) UDP segment format 11/11/2018 COSC 4213 - S.Datta

treat segment contents as sequence of 16-bit integers UDP checksum Goal: detect “errors” (e.g., flipped bits) in transmitted segment Sender: treat segment contents as sequence of 16-bit integers checksum: addition (1’s complement sum) of segment contents sender puts checksum value into UDP checksum field Receiver: compute checksum of received segment check if computed checksum equals checksum field value: NO - error detected YES - no error detected. But maybe errors nonetheless? More later …. 11/11/2018 COSC 4213 - S.Datta

Internet Checksum Example Note When adding numbers, a carryout from the most significant bit needs to be added to the result Example: add two 16-bit integers 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 Kurose and Ross forgot to say anything about wrapping the carry and adding it to low order bit wraparound sum checksum 11/11/2018 COSC 4213 - S.Datta

3.1 Transport-layer services 3.2 Multiplexing and demultiplexing Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 3.6 Principles of congestion control 3.7 TCP congestion control 11/11/2018 COSC 4213 - S.Datta

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 full duplex data: bi-directional data flow in same connection MSS: maximum segment size connection-oriented: handshaking (exchange of control msgs) init’s sender, receiver state before data exchange flow controlled: sender will not overwhelm receiver point-to-point: one sender, one receiver reliable, in-order byte steam: no “message boundaries” pipelined: TCP congestion and flow control set window size send & receive buffers 11/11/2018 COSC 4213 - S.Datta

TCP segment structure source port # dest port # application data 32 bits application data (variable length) sequence number acknowledgement number Receive window Urg data pnter checksum F S R P A U head len not used Options (variable length) URG: urgent data (generally not used) counting by bytes of data (not segments!) ACK: ACK # valid PSH: push data now (generally not used) # bytes rcvr willing to accept RST, SYN, FIN: connection estab (setup, teardown commands) Internet checksum (as in UDP) 11/11/2018 COSC 4213 - S.Datta

simple telnet scenario TCP seq. #’s and ACKs Seq. #’s: byte stream “number” of first byte in segment’s data ACKs: seq # of next byte expected from other side cumulative ACK Q: how receiver handles out-of-order segments A: TCP spec doesn’t say, - up to implementor Host A Host B User types ‘C’ Seq=42, ACK=79, data = ‘C’ host ACKs receipt of ‘C’, echoes back ‘C’ Seq=79, ACK=43, data = ‘C’ host ACKs receipt of echoed ‘C’ Seq=43, ACK=80 time simple telnet scenario 11/11/2018 COSC 4213 - S.Datta

TCP Round Trip Time and Timeout Q: how to set TCP timeout value? longer than RTT but RTT varies too short: premature timeout unnecessary retransmissions too long: slow reaction to segment loss Q: how to estimate RTT? SampleRTT: measured time from segment transmission until ACK receipt ignore retransmissions SampleRTT will vary, want estimated RTT “smoother” average several recent measurements, not just current SampleRTT 11/11/2018 COSC 4213 - S.Datta

TCP Round Trip Time and Timeout EstimatedRTT = (1- )*EstimatedRTT + *SampleRTT Exponential weighted moving average influence of past sample decreases exponentially fast typical value:  = 0.125 11/11/2018 COSC 4213 - S.Datta

Example RTT estimation: 11/11/2018 COSC 4213 - S.Datta

TCP Round Trip Time and Timeout Setting the timeout EstimtedRTT plus “safety margin” large variation in EstimatedRTT -> larger safety margin first estimate of how much SampleRTT deviates from EstimatedRTT: DevRTT = (1-)*DevRTT + *|SampleRTT-EstimatedRTT| (typically,  = 0.25) Then set timeout interval: TimeoutInterval = EstimatedRTT + 4*DevRTT 11/11/2018 COSC 4213 - S.Datta

Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 3.6 Principles of congestion control 3.7 TCP congestion control 11/11/2018 COSC 4213 - S.Datta

TCP reliable data transfer TCP creates rdt service on top of IP’s unreliable service Pipelined segments Cumulative acks TCP uses single retransmission timer Retransmissions are triggered by: timeout events duplicate acks Initially consider simplified TCP sender: ignore duplicate acks ignore flow control, congestion control 11/11/2018 COSC 4213 - S.Datta

TCP sender events: data rcvd from app: Create segment with seq # seq # is byte-stream number of first data byte in segment start timer if not already running (think of timer as for oldest unacked segment) expiration interval: TimeOutInterval timeout: retransmit segment that caused timeout restart timer Ack rcvd: If acknowledges previously unacked segments update what is known to be acked start timer if there are outstanding segments 11/11/2018 COSC 4213 - S.Datta

TCP sender (simplified) NextSeqNum = InitialSeqNum SendBase = InitialSeqNum loop (forever) { switch(event) event: data received from application above create TCP segment with sequence number NextSeqNum if (timer currently not running) start timer pass segment to IP NextSeqNum = NextSeqNum + length(data) event: timer timeout retransmit not-yet-acknowledged segment with smallest sequence number event: ACK received, with ACK field value of y if (y > SendBase) { SendBase = y if (there are currently not-yet-acknowledged segments) } } /* end of loop forever */ TCP sender (simplified) Comment: SendBase-1: last cumulatively ack’ed byte Example: SendBase-1 = 71; y= 73, so the rcvr wants 73+ ; y > SendBase, so that new data is acked 11/11/2018 COSC 4213 - S.Datta

TCP: retransmission scenarios Host A Seq=92, 8 bytes data ACK=100 loss timeout lost ACK scenario Host B X time Host A Host B Seq=92 timeout Seq=92, 8 bytes data Seq=100, 20 bytes data ACK=100 ACK=120 Sendbase = 100 Seq=92, 8 bytes data SendBase = 120 Seq=92 timeout ACK=120 SendBase = 100 SendBase = 120 premature timeout time 11/11/2018 COSC 4213 - S.Datta

TCP retransmission scenarios (more) Host A Seq=92, 8 bytes data ACK=100 loss timeout Cumulative ACK scenario Host B X Seq=100, 20 bytes data ACK=120 time SendBase = 120 11/11/2018 COSC 4213 - S.Datta

TCP ACK generation [RFC 1122, RFC 2581] Event at Receiver Arrival of in-order segment with expected seq #. All data up to expected seq # already ACKed expected seq #. One other segment has ACK pending Arrival of out-of-order segment higher-than-expect seq. # . Gap detected Arrival of segment that partially or completely fills gap TCP Receiver action Delayed ACK. Wait up to 500ms for next segment. If no next segment, send ACK Immediately send single cumulative ACK, ACKing both in-order segments Immediately send duplicate ACK, indicating seq. # of next expected byte Immediate send ACK, provided that segment starts at lower end of gap 11/11/2018 COSC 4213 - S.Datta

Fast Retransmit Time-out period often relatively long: long delay before resending lost packet Detect lost segments via duplicate ACKs. Sender often sends many segments back-to-back If segment is lost, there will likely be many duplicate ACKs. If sender receives 3 ACKs for the same data, it supposes that segment after ACKed data was lost: fast retransmit: resend segment before timer expires 11/11/2018 COSC 4213 - S.Datta

Fast retransmit algorithm: event: ACK received, with ACK field value of y if (y > SendBase) { SendBase = y if (there are currently not-yet-acknowledged segments) start timer } else { increment count of dup ACKs received for y if (count of dup ACKs received for y = 3) { resend segment with sequence number y a duplicate ACK for already ACKed segment fast retransmit 11/11/2018 COSC 4213 - S.Datta

Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 3.6 Principles of congestion control 3.7 TCP congestion control 11/11/2018 COSC 4213 - S.Datta

TCP Flow Control flow control receive side of TCP connection has a receive buffer: sender won’t overflow receiver’s buffer by transmitting too much, too fast flow control speed-matching service: matching the send rate to the receiving app’s drain rate app process may be slow at reading from buffer 11/11/2018 COSC 4213 - S.Datta

TCP Flow control: how it works Rcvr advertises spare room by including value of RcvWindow in segments Sender limits unACKed data to RcvWindow guarantees receive buffer doesn’t overflow (Suppose TCP receiver discards out-of-order segments) spare room in buffer = RcvWindow = RcvBuffer-[LastByteRcvd - LastByteRead] 11/11/2018 COSC 4213 - S.Datta

Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 3.6 Principles of congestion control 3.7 TCP congestion control 11/11/2018 COSC 4213 - S.Datta

TCP Connection Management Three way handshake: Step 1: client host sends TCP SYN segment to server specifies initial seq # no data Step 2: server host receives SYN, replies with SYNACK segment server allocates buffers specifies server initial seq. # Step 3: client receives SYNACK, replies with ACK segment, which may contain data Recall: TCP sender, receiver establish “connection” before exchanging data segments initialize TCP variables: seq. #s buffers, flow control info (e.g. RcvWindow) client: connection initiator Socket clientSocket = new Socket("hostname","port number"); server: contacted by client Socket connectionSocket = welcomeSocket.accept(); 11/11/2018 COSC 4213 - S.Datta

TCP Connection Management (cont.) Closing a connection: client closes socket: clientSocket.close(); Step 1: client end system sends TCP FIN control segment to server Step 2: server receives FIN, replies with ACK. Closes connection, sends FIN. client FIN server ACK close closed timed wait 11/11/2018 COSC 4213 - S.Datta

TCP Connection Management (cont.) Step 3: client receives FIN, replies with ACK. Enters “timed wait” - will respond with ACK to received FINs Step 4: server, receives ACK. Connection closed. Note: with small modification, can handle simultaneous FINs. client server closing FIN ACK closing FIN ACK timed wait closed closed 11/11/2018 COSC 4213 - S.Datta

TCP Connection Management (cont) TCP server lifecycle TCP client lifecycle 11/11/2018 COSC 4213 - S.Datta