Spherical and cylindrical nanolayers: electronic states, quantum transitions Hayk Sarkisyan Russian-Armenian (Slavonic) University Yerevan State University.

Slides:



Advertisements
Similar presentations
Simulating the Energy Spectrum of Quantum Dots J. Planelles.
Advertisements

Anodic Aluminum Oxide.
Potential for measurement of the tensor electric and magnetic polarizabilities of the deuteron and other nuclei in experiments with polarized beams Alexander.
GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca,
Hot Electron Energy Relaxation In AlGaN/GaN Heterostructures 1 School Of Physics And Astronomy, University of Nottingham, University Park, Nottingham,
Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA.
Quantum Dots PA2003: Nanoscale Frontiers Artificial atoms Schr ö dinger equation Square well potential Harmonic oscillator 2D Harmonic oscillator Real.
“Quantum computation with quantum dots and terahertz cavity quantum electrodynamics” Sherwin, et al. Phys. Rev A. 60, 3508 (1999) Norm Moulton LPS.
Hidden Reentrant and Larkin-Ovchinnikov- Fulde-Ferrell Phase in a Magnetic Filed in (TMTSF) 2 ClO 4 ECRYS (August 17 th 2011) Andrei G. Lebed Department.
Cyclotron Resonance and Faraday Rotation in infrared spectroscopy
Laser Physics I Dr. Salah Hassab Elnaby Lecture(2)
Quantum Dots: Confinement and Applications
Modeling of Energy States of Carriers in Quantum Dots
Lesson 4: The physics of low-dimensional semiconductors.
ITOH Lab. Hiroaki SAWADA
Computational Solid State Physics 計算物性学特論 5回
InAs on GaAs self assembled Quantum Dots By KH. Zakeri sharif University of technology, Spring 2003.
Lecture 2 Magnetic Field: Classical Mechanics Magnetism: Landau levels Aharonov-Bohm effect Magneto-translations Josep Planelles.
Brijender Dahiya*, Kriti Batra and Vinod Prasad *Department of Physics, Swami Shraddhanand College (University of Delhi) Delhi, INDIA.
321 Quantum MechanicsUnit 2 Quantum mechanics unit 2 The Schrödinger equation in 3D Infinite quantum box in 3D 3D harmonic oscillator The Hydrogen atom.
1 托卡马克位形优化 (2) 高庆弟 SWIP 核工业西南物理研究院 成都. 2 Nonlinearity of LH wave absorption  The plasma temperature in HL-2A is much lower than that in future reactor.
Interface-induced lateral anisotropy of semiconductor heterostructures M.O. Nestoklon, Ioffe Physico-Technical Institute, St. Petersburg, Russia JASS 2004.
Example: Radially Polarized Tube. Introduction This is a 2D static axisymmetric piezoelectric benchmark problem A radially polarized piezoelectric tube.
Pump design Raimonds Nikoluskins CERN – LIEBE project coordination meeting.
Physics 451 Quantum mechanics I Fall 2012 Nov 20, 2012 Karine Chesnel.
Gang Shu  Basic concepts  QC with Optical Driven Excitens  Spin-based QDQC with Optical Methods  Conclusions.
Seung Hyun Park Hyperfine Mapping of Donor Wave Function Deformations in Si:P based Quantum Devices Seung Hyun Park Advisors: Prof. Gerhard Klimeck Prof.
Confinement-deconfinement Transition in Graphene Quantum Dots P. A. Maksym University of Leicester 1. Introduction to quantum dots. 2. Massless electron.
Atomic Structure and Atomic Spectra
Recent Advances in the Theoretical Methods and Computational Schemes for Investigations of Resonances in Few-Body Atomic Systems Y. K. Ho Institute of.
Electron-hole duality and vortex formation in quantum dots Matti Manninen Jyväskylä Matti Koskinen Jyväskylä Stephanie Reimann Lund Yongle Yu Lund Maria.
Confinement of Excitons in Strain-engineered InAs/InGaAs/GaAs Metamorphic Quantum Dots By Shaukat Ali Khattak1,2 Manus Hayne1, Luca Seravalli3, Giovanna.
Alex Samarian Complex Plasma Laboratory School of Physics, University of Sydney, NSW 2006, Australia
NIRT: Semiconductor nanostructures and photonic crystal microcavities for quantum information processing at terahertz frequencies M. S. Sherwin and P.
Influence of photon recycling on the photoemission from GaAs-photocathode 1 H.E. Scheibler, S.A. Rozkov, V.V. Bakin, S.N. Kosolobov, A.S. Terekhov Rzhanov.
MICRA: status report Exploration of atom-surface forces on a micrometric scale via high sensitivity force measurements with ultracold quantum gases. Objectives:
Overview of the research of nanosystems at BLTP
Electromagnetic interactions in a pair of coupled split ring resonators S. Seetharaman, I. R. Hooper, W. L. Barnes Department of Physics & Astronomy, University.
Resonant Zener tunnelling via zero-dimensional states in a narrow gap InAsN diode Davide Maria Di Paola School of Physics and Astronomy The University.
Structured Electron Beams from Nano-engineered Cathodes
Excitons in Excited States in a Quantum Well
S.V. Blazhevich1), I.V. Kolosova2), A.V. Noskov2)
CREC in the AC operation theory via simulation and experiment
& Figures Descriptions
Plasmonic waveguide filters with nanodisk resonators
Spin-orbit interaction in a dual gated InAs/GaSb quantum well
IRG-3 Electron Spin Coherence of Shallow Donors in Germanium (DMR )
Enhanced Growth and Field Emission of Carbon Nanotube by Nitrogen Incorporation: The First Principle Study Hyo-Shin Ahn*, Seungwu Han†, Do Yeon Kim§, Kwang-Ryeol.
DITANET Conference, Seville, Spain
Magnetic Field: Classical Mechanics Aharonov-Bohm effect
C. Blondel, C. Delsart, C. Drag, R. J. Peláez & M. Vandevraye
Carbon Nanotube Vias By: Rhesa Nathanael.
An Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity Matthew Pelton Glenn Solomon, Charles Santori, Bingyang Zhang, Jelena.
Gyrofluid Turbulence Modeling of the Linear
Magneto-Photoluminescence of Carbon Nanotubes at Ultralow Temperatures
Effect of Electric Field on the Behaviors of Phase and Phase Transition of Water Confined in Carbon Nanotube Zhenyu Qian, Zhaoming Fu, and Guanghong Wei.
Terahertz Spectroscopy of CdSe Quantum Dots
Hydrogen Atom PHY
Hydrogen Atom Returning now to the hydrogen atom we have the radial equation left to solve The solution to the radial equation is complicated and we must.
Carbon Nanotube Diode Design
Rajib Rahman, Seung Hyun Park
Experimental determination of isospin mixing in nuclear states;
Introduction to Food Engineering
Ballooning Structure of Core Turbulence
Ioffe Institute, St. Petersburg, Russian Federation
Chap. 20 in Shankar: The Dirac equation for a hydrogen atom
Review Chapter 1-8 in Jackson
(TH/8-1, Jae-Min Kwon et al
Quantum Hall Breakdown a microscopic model and a hydrodynamic analogy
Image-potential States in Carbon Nanotubes
Presentation transcript:

Spherical and cylindrical nanolayers: electronic states, quantum transitions Hayk Sarkisyan Russian-Armenian (Slavonic) University Yerevan State University

The idea of size-quantisation

Some geometries of quantum dots

Fulerens and nanotubes

Simple models of layered systems Z O R1 R2 X Y Z O Spherical layer QD Cylindrical layer QD

GaInAs quantum rings Lorke et al (Phys. Rev. Lett. 84, 2223 (2000)). Fig. 1. GaInAs quantum rings Lorke et al (Phys. Rev. Lett. 84, 2223 (2000)). 250250 нм2.

Bound structures of quantum layer Fig. 2. Bound structures of quantum layer

Chakraborty-Pietilainen model (Phys. Rev. Lett. 84, 2223 (2000)) Fig. 3. Chakraborty-Pietilainen model (Phys. Rev. Lett. 84, 2223 (2000)) Fig. 4. Smorodinsky-Winternitz model (Yadernaya fizika 4, 625 (1966)).

Difference between potentials profiles: 2 1 Fig. 5. Difference between potentials profiles: 1. Chakraborty-Pietilainen model, 2. Smorodinsky-Winternitz model

1. Parameters of quantum ring Experimental data (Lorke et al - Phys. Rev. Lett. 84, 2223 (2000)) quantum ring – InAs coating – GaAs inner radius – 10 nm outer radius – from 30 to 70 nm thickness – 2 nm L R1 R2 z o Cylindrical layer quantum dot

2. Models of confining potentials 1. – Chakraborty-Pietilainen model (Phys. Rev. B 50, 8460 (1994)). 2. – Model of the impenetrable cylindrical layer quantum dot (Physica E 36, 114 (2007) ) 3. – Smorodinsky-Winternitz model (Yadernaya fizika 4, 625 (1966)). 4. – Radial analog of the Smorodinsky-Winternitz potential

3. Quantum ring in the magnetic field

F(a,b,x) – confluent hypergeometrical function. – effective mass of the electron ( – hole ) F(a,b,x) – confluent hypergeometrical function.

4. Absorption coefficient

5. Influence of electric field z o

6. Rotator model L R1 R2 z o x

Rotational levels Radial level

7. Electronic states in the spherical nanolayer 1. E.M. Kazaryan, A.A. Kostanyan, H.A. Sarkisyan, J. Cont. Phys. (2007). 2. M.A. Zuhair, A.Kh. Manaselyan, H.A. Sarkisyan, J. Phys.: Conf. Ser. (2008).

Parabolic quantum well with hydrogen-like impurity 1A. A. Gusev, et al, Phys. At. Nucl., 2010, Vol. 73, (accepted).

THANK YOU!