CMOS Analog Design Using All-Region MOSFET Modeling

Slides:



Advertisements
Similar presentations
Chapter 7 Operational-Amplifier and its Applications
Advertisements

Instructor:Po-Yu Kuo 教師:郭柏佑
Differential Amplifiers
Introduction to Op Amps
Operational Amplifier (2)
Chapter #12: Operational-Amplifier Circuits
Introduction to Op Amp Circuits ELEC 121. April 2004ELEC 121 Op Amps2 Basic Op-Amp The op-amp is a differential amplifier with a very high open loop gain.
Module 4 Operational Amplifier
1 EE 501 Fall 2009 Design Project 1 Fully differential multi-stage CMOS Op Amp with Common Mode Feedback and Compensation for high GB.
W3,4: Operational Amplifier Design Insoo Kim, Jaehyun Lim, Kyungtae Kang Mixed Signal CHIP Design Lab. Department of Computer Science & Engineering The.
Improving Op Amp performance
Unit 8 Operational Amplifier. Objectives: Ideal versus practical operational amplifier Performance parameters Some applications –Peak detector –Absolute.
Large Signal Amplifier Design Ryan Child 1. Background Large Signal Amplifiers belong to a class of amplifiers that are used for applications where high.
CMOS 2-Stage OP AMP 설계 DARK HORSE 이 용 원 홍 길 선
2. CMOS Op-amp설계 (1).
Module 2 Operational Amplifier Basics
Chapter 13 Small-Signal Modeling and Linear Amplification
UNIT -V IC MOSFET Amplifiers.
Ch 03 Amplifiers and Signal Processing
Basic Block Diagram of Op-Amp
1.6 Op-Amp Basics Basic Op-Amp Practical (Ri = high , Ro = small)
Recall Last Lecture Biasing of BJT Three types of biasing
Operational Amplifier
Branch:- Electrical (09)
Analogue Electronics Circuit II EKT 214/4
Analogue Electronic 2 EMT 212
Electronic Devices Ninth Edition Floyd Chapter 12.
What is an Op-Amp Low cost integrating circuit consisting of:
Lecture 13 High-Gain Differential Amplifier Design
Operational Amplifiers
Complete Ch. 2, Begin Ch. 14, Look at Ch. 11
Recall Lecture 13 Biasing of BJT Voltage Divider Biasing Circuit.
Small-Signal Modeling and Linear Amplification
OSCILLATOR & Operational Amplifier
Chapter 5: BJT AC Analysis
Voltage doubler for gate overdrive
Analog Electronic Circuits 1
CASCODE AMPLIFIER.
Basic Amplifiers and Differential Amplifier
Subject Name: Microelectronics Circuits Subject Code: 10EC63
Fully differential op amps
Operational Amplifier Design
تقویت کننده های عملیاتی
Input common mode range drop
دکتر سعید شیری & کتابMICROELECTRONIC CIRCUITS 5/e Sedra/Smith
Notes on Diodes 1. Diode saturation current:  
Week 9a OUTLINE MOSFET ID vs. VGS characteristic
Principles & Applications Small-Signal Amplifiers
Lecture 13 High-Gain Differential Amplifier Design
vs vin- vin+ vbp vbn vbn vbb vbb VDD VDD M9 M12 M1 M2 v- v+ Iref M3 M4
Comparator What is a Comparator?
Last time Reviewed 4 devices in CMOS Transistors: main device
Common mode feedback for fully differential amplifiers
A MOSFET Opamp with an N-MOS Dfferential Pair
Bipolar Junction Transistor
Types of Amplifiers Common source, input pairs, are transconductance
Input common mode range
Common mode feedback for fully differential amplifiers
Common source output stage:
Week 9a OUTLINE MOSFET ID vs. VGS characteristic
Complementary input stage with rail-to-rail Vicmr and constant gm
Folded cascode stage: summing current and convert to voltage
Rail-to-rail Input Stage
LOW VOLTAGE OP AMPS We will cover: Methodology:
Differential Amplifier
Lecture #17 (cont’d from #16)
ECE 3336 Introduction to Circuits & Electronics
Chapter 5 OUTLINE Op-Amp from 2-Port Blocks
Analysis of Single Stage Amplifiers
Chapter 15 Differential Amplifiers and Operational Amplifier Design
Presentation transcript:

CMOS Analog Design Using All-Region MOSFET Modeling Chapter 8 Operational amplifiers CMOS Analog Design Using All-Region MOSFET Modeling

The ideal operational amplifier + vi - Avi RS vo A RS=0 + vi - Gmvi GS vo Gm=AGS CMOS Analog Design Using All-Region MOSFET Modeling

Applications of operational amplifiers - 1 + vi - R2 R1 vo Inverting amplifier - + R2 R1 vi vo Non inverting amplifier CMOS Analog Design Using All-Region MOSFET Modeling

Applications of operational amplifiers - 2 + R2 i vo Transimpedance amplifier Continuous-time filters SC filters D/A & A/D converters Sensor signal conditioning Voltage & current references Comparators Nonlinear analog functions, ....... (d) C + vo - R vi CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Applications of operational amplifiers - 3 C + vo - R vi 1 2 S/H circuit C2 + vo - vi C1 1 2 Switched-capacitor integrator CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Performance parameters of op amps - 1 Table 8.1 Measured dc and ac characteristics of the buffered op amp of reference [7]. 10 mW Power dissipation 0.88 V Vout- 4.12 V Vout+ 1 mV Offset voltage 18.8 V/s SR- (50 || 33 pF load) 20.4 V/s SR+ (50 || 33 pF load) 11.4 MHz Gain-bandwidth product 67.2 dB DC gain (163|| 33 pF load) 5 V Supply voltage CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Performance parameters of op amps - 2 Table 8.2 Experimental performance of the operational amplifiers of [8] (Vsupply = 1 V, Technology: 1.2-m CMOS, C = 15 pF). 56.7 dB 51.5 dB 54.4 dB 52.1 dB PSRR+ PSRR- 58 dB 62 dB CMRR 359 nV/Hz 171 nV/Hz 82 nV/Hz 267 nV/Hz 91 nV/Hz 74 nV/Hz vni (@ 1 kHz) vni (@ 10 kHz) vni (@ 1 MHz) -77 dB -57 dB -54 dB -32 dB THD (0.5 Vpp @ 1 kHz) THD (0.5 Vpp @ 40 kHz) 0.9 V/s 1.7 V/s 0.8 V/s 1 V/s SR+ SR- 73o 61o Phase margin 2.1 MHz 1.9 MHz Unity-gain frequency 70.5 dB 87 dB DC gain 208 A 410 A IDD (supply current) 0.26 mm2 0.81 mm2 Active die area Amplifier II Amplifier I Parameter CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling The differential amplifier as an op amp - 1 CL I2 IT I1= I3 i0 M4 M3 I4 vO + vG1 - M1 M2 vG2 1:1 VSS Low gain Reduced output swing What is the maximum output swing when the conventional differential pair is used for a buffer? CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling The differential amplifier as an op amp - 2 Telescopic-cascode differential amplifier VO M7 M6 + VG1 - VDD VG2 M5 IT M1 M2 VX M3 M4 M8 VBN VBP What is the maximum output swing when the telescopic-cascode differential pair is used for a buffer? CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling The symmetric op amp - 1 VSS IT + vG1 - M1 M2 I1 I2 vG2 Current Mirror B:1 CL BI1 BI2 Io= B(I2-I1) 1:B 1:1 CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling The symmetric op amp - 2 VO M1 M2 + VG1 - VG2 M4 1:B IT VX M3 M5 VDD M6 M7 M8 B:1 1:1 CL IL VY -1 I1/IT I2/IT 4 2 -2 -4 1 IL/BIT VID (a. u.) CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling The symmetric op amp - 3 Io= B(I2-I1) VSS IT + vG1 - M1 M2 I1 I2 vG2 B:1 1:B 1:1 BI1 BI2 CL asymmetry Common-mode input range: see diff. amp. CL+CP + vo - Current mirrors delays were neglected CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Problem: VO M7 M6 + VG1 - VDD VG2 M5 IT M1 M2 VX M3 M4 M8 VBN VBP Suppose that the high-swing telescopic op amp will be used in an application such that VICM is constant and chosen as equal to the minimum voltage such that ISS remains in saturation. In this case, what would be the maximum output swing when Vb1 and Vb2 are optimally biased? Telescopic differential amplifier with high-swing cascode current mirror CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Folded cascode amplifiers - 1 IT IT/2 i 2i M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 + - IB VDD VSS Vbias2 vo CL vi1 vi2 Vbias1 N2 N1 Vbias3 Can be replaced with high-swing current mirror to increase positive output swing CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Folded cascode amplifiers - 2 IT io M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 + - VDD VSS VB3 vo CL vi1 vi2 VB2 VB1 VB4 What is the maximum achievable output swing? The common-mode input range is VICM,minVSS; VICM,max=VDD-VDSsat11-VSG1 VDD IREF M16 M12 VSS M13 M14 M15 to VB1 VB2 VB3 VB4 M17 M18 Bias network CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Folded cascode amplifiers - 3 Offset voltage IT io M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 + - VDD VSS VB3 vo CL vi1 vi2 VB2 VB1 VB4 CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Folded cascode amplifiers - 4 Note: The output swing can be around -VSS+2VDSsatn to VDD-2VSDsatp for optimized bias. IT io M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 + - VDD VSS VB3 vo CL vi1 vi2 VB2 VB1 VB4 Ro & doublet CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Folded cascode amplifiers - 5 CMRR IT io M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 + - VDD VSS VB3 vo CL vi1 vi2 VB2 VB1 VB4 N-well of input transistors to VDD CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Folded cascode amplifiers - 6 IT io M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 + - VDD VSS VB3 vo CL vi1 vi2 VB2 VB1 VB4 PSRRvss CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Folded cascode amplifiers - 7 IT io M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 + - VDD VSS VB3 vo CL vi1 vi2 VB2 VB1 VB4 Noise Input-referred noise CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Two-stage amplifiers - 1 Common-mode input range: see diff. amp. VDD CL VSS M4 M3 M1 M2 M8 M5 M7 M6 IT vi + - CC vo 1:1 1:B 1:2B inv non inv Output swing: For systematic offset  0.  same offset voltage as diff. amp. CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Two-stage amplifiers - 2 VDD CL VSS M4 M3 M1 M2 M5 M7 M6 IT vi + - CC vo 1:B 1:1 1:2B inv non inv voI goI + vid - gmI CoI vo goII CL -gmII Frequency compensation ioI CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Two-stage amplifiers - 3 Equivalent differential circuit + vin - RI gmIvin CI vI gmIIvI RII CII vo CC For CC0 Poles relatively close  phase margin can be low or even negative !!! Exercise: Derive the transfer function Ad(s) of the compensated operational amplifier CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Two-stage amplifiers - 4 voI goI + vid - gmI CoI vo goII CL -gmII Frequency compensation ioI Frequency compensation CC CC=0 CC0 CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Two-stage amplifiers - 5 s-plane j p1 p2 -goI/CoI -goII/CL z  Poles for CC=0 Poles for CC0 Pole splitting CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Two-stage amplifiers - 6 When you design an op amp you must take into account both load and feedback loop. |AV|dB goI/CoI u goII/CL (a) Uncompensated op amp  (rad) -/2 - log z -p1 -p2 (b) Compensated op amp PM CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Two-stage amplifiers - 7 CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Two-stage amplifiers - 8 CMRR: same as in differential amplifier CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Two-stage amplifiers - 9 Noise voI goI gmI + - CoI vo goII CL -gmII enII enI CC Input-referred noise of the second stage Noise of 1st stage prevails over that of the 2nd stage except for frequencies approaching u CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Two-stage amplifiers - 10 M5 VO M1 M2 + VG1 - VDD VG2 IT CL M3 M4 IL 1:1 1:2B CC M6 M7 inv ninv VOI IC BIT ID6 CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Two-stage amplifiers - 11 Amplitude x frequency limitation due to SR Amplitude limitation SR-limited slope J. Dostál, Operational Amplifiers, 2nd. Ed., Butterworth-Heinemann, Boston, 1993. CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Two-stage amplifiers - 12 M5 VO M1 M2 VDD IT M3 M4 1:1 1:2B CC M6 M7 BIT IB M8 +1 voI goI + vid - gmI CoI vo goII CL -gmII ioI CC +1 CL Elimination of the feed forward effect of CC using a buffer CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Two-stage amplifiers - 13 Nulling resistor goII voI goI + vid - gmI CoI vo CL -gmII ioI CC RZ M5 VO M1 M2 VDD IT CL M3 M4 1:1 1:2B CC M6 M7 BIT M8 Bias CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Some comments on op amp design - 1 No general rules Specs depend on the application: - + - + CMIR changes (diff. amp. with complementary input pairs can be required) CMIR =0 - + - + Capacitive load RC load CMOS Analog Design Using All-Region MOSFET Modeling

Improved SNR and matching for m>1 Some comments on op amp design - 2 Improved SNR and matching for m>1 Scalable design: - + m mC - +  C Switched circuits with fsample>>fNyquist - SR is not important but settling time is CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Three-stage amplifiers + vid - gmI gmII vo CL -gmIII CmII CmI -gmfII gmfI 3-stage op amp with nested Miller compensation (NMC). The nested transconductance-capacitance compensation (NGCC) amplifier is the NMC + two transconductors (dashed lines). CMOS Analog Design Using All-Region MOSFET Modeling

Rail-to-rail input stages - 1 IT M1 M2 M9 M10 M11 + - VSS Vbias1 Vbias3 VSDsat11 VSG1 VSD1 VDS9VDSsat9 Problem of the p-channel input differential pair : VICM<VDD Similarly, for the n-channel input pair : VICM>VSS How to get a rail-to-rail differential amplifier ? Combine p- and n-channel input differential pairs CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Rail-to-rail input stages - 2 Combining p- and n-channel input differential pairs IT1 io M1 M2 M3 M4 M5 M6 M7 M8 M10 VDD VSS +vin -vin VB2 VB1 IT2 IB M9 Current switches Rail-to-rail input differential amplifier Transconductance, noise, and offset voltage are not constant over the input range. The “current switches” block is included to keep the transconductance approximately constant over the input range. CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Class-AB output stages - 1 Class-A amplifiers: poor efficiency and high quiescent power VI VDD VSS VO IB IO RL -RLIB VO VDD-VDSsat VI CMOS class-A source follower (b) voltage transfer curve CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Class-AB output stages - 2 VDD VI VSS VO IO (a) M1 M2 VO VDD-VDssat1 VI VSS+|VDssat2| (b) (b) voltage transfer curve (a) CMOS class-B source follower CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Class-AB output stages - 3 (a) VDD VSS VO IO VI IB M1 M2 M4 M3 1:N VO VDD-VDSsat1 VI VSS+|VDSsat2| (b) VI0 (a) CMOS class-AB source follower (b) voltage transfer curve Problem for low-voltage supply: Output voltage cannot swing close to the supply rails & stacked diodes CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Class-AB output stages - 4 CMOS common-source output stage and push (IP) and pull (IN) currents versus output current. CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Class-AB output stages - 5 Rail-to-rail output stage and bias circuit for class-AB operation CMOS Analog Design Using All-Region MOSFET Modeling

Class-AB output stages - 6 Two-stage op amp with rail-to-rail class-AB output stage CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Fully-differential amplifiers - 1 R2 + vod - R1 vid vo1 vo2 t t vod Vocm FD SE Vopp 2: 1 Noise power SNR Even-order harm. No (match) Yes CMRR, PSRR Improved CMFB circuit No Area ~2: FD = Fully-differential SE = Single-ended CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Fully-differential amplifiers - 2 M1 M2 M6 M3 M4 + - VDD VSS Vbias vo2 vi1 vi2 vo1 M5 IT/2  + M3r M1r M5r Vcm,ref A A1 Example of idealized FD amplifier (transistors assumed to be matched) and bias network employed to set the common-mode output voltage to Vcm,ref. CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Fully-differential amplifiers - 3 VDD IT M1 M2 M5 M3 M4 + - VSS Vbias vo2 vi1 vi2 vo1 +  Vcm,ref R A M1r M2r M5r M3r M4r out Simplified scheme of an FD amplifier. On the right is the low-gain amplifier, a replica of the main amplifier but with diode connected loads. CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Fully-differential amplifiers - 4 VDD IT/4 M2 M1 M5 M4 M3 - + Vcm,ref IT M3/2 vo2 vi1 vi2 vo1 R Vocm 2M3 VSS CL M4/2 FD amplifier with resistive CM detector and the error amplifier on the right employed to set the common-mode output voltage to Vcm,ref. CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Fully-differential amplifiers - 5 Vcm,ref VSS IT 4M1 8M1 2M5 2IT M5 M3 + - vo2 vi1 vi2 vo1 Vocm to Vcm,ref (or VSS) R An FD amplifier where the two CM transconductors are replicas of the DM transconductor CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Fully-differential amplifiers - 6 M1 vi1 2M1 VDD 4M1 M3 + - vo2 vi2 vo1 IT VSS Vcm,ref 2M3 IT/2 IT/4 An FD amplifier employing CM detection based on differential pairs which are replicas of the DM transconductor CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Fully-differential amplifiers - 7 2M4C VDD IT M1A M2A M5A M3A M4A + - VSS vo2 vi1 vi2 vo1 Vcm,ref M5B IT/2 M6A M7A M6B M7B 2M4B An FD amplifier using transistors in the triode region to set the common-mode output voltage to Vcm,ref CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Fully-differential amplifiers - 8 Complete schematic of an FD two-stage op amp including the CM control circuit CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Fully-differential amplifiers - 9 Complete schematic of an FD folded-cascode op amp fabricated in 1.75 m CMOS technology CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Using All-Region MOSFET Modeling Fully-differential amplifiers - 10 IT A 4M1 4M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 + - VDD VSS VB3 vo1 vi1 vi2 VB2 VB1 VB4 vo2 B (a) IT/2 M1 2M2 M12 Vcm,ref 2M12 IT/4 (b) ioA ioB Simplified schematics of (a) folded-cascode op amp and (b) common-mode feedback circuit CMOS Analog Design Using All-Region MOSFET Modeling